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ABSTRACT

Laser interferometer systems are known for their high resolution, and especially for their high range/resolution
ratio. In dimensional metrology laboratories, laser interferometers are popular workhorses for the calibration of
displacements. The uncertainty is usually limited to about 10 nm due to polarization- and frequency mixing.
For demanding applications however nanometer uncertainty is desired. We adapted a commercially available
heterodyne laser interferometer by feeding the measurement signal into a fast lock-in amplifier and use the laser
interferometer reference signal as a reference. By measuring both the in-phase and quadrature component an
uncorrected phase can be directly measured. By recording both components while the phase changes between
0 and 2π a typical ellipse is recorded from which the first and second harmonics of periodic deviations can be
derived. These can be corrected independent of their origin. Measurements using a Babinet-Soleil compensator
show that this method can reduce significant non-linearities (16 nm top-bottom) to a standard deviation down
to about 0.01 nm. This is confirmed in the evaluation of some standard optical-set-ups. With this method, also
optical set-ups can be analysed to predict the non-linearities when a non-compensated standard interferometer
is used.
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1. INTRODUCTION

Laser interferometer systems are known for their high resolution, and especially for their high range/resolution
ratio. In dimensional metrology laboratories, laser interferomters are popular workhorses for the calibration
of displacements. Their uncertainty is limited to the refractive index of air for long range. For short range
calibration the limitations are in the photonic noise and residual nonlinearities repeating each fraction of a
wavelength. The nonlinearities can be present in the phase measurement system of the interferometer itself,1 but
they can also result from polarization states of the laser and the optics used: beam splitters, retardation plates
used with plane mirrors and corner cubes can influence the polarization state in interferometers using polarizing
optics, or influence the contrast in interferometers with non-polarizing optics. Compensation of nonlinearities
becomes important within the nanometer region. For homodyne laser interferometers the compensation method
of Heydemann2 is used widely.3 A quadrature phase measurement method in combination with a lock-in
amplifier was used previously to compensate a heterodyne interferometer with a split frequency of 160 kHz.4

We are using a combination of both methods for a commercial heterodyne laser interferometer with a split
frequency of 2.7 MHz and compare the results with calculations using a theoretical model.

2. PRINCIPLE OF HETERODYNE LASER INTERFEROMETRY

The laser shown in figure 1 consists of a laser source which emits two orthogonal polarized beams with a different
frequency (f1 and f2). These two beams can be represented as:

E1 = E0 sin(2πf1t + φ01) (1)
E2 = E0 sin(2πf2t + φ02). (2)
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Figure 1. Schematical representation of the principle of a heterodyne laser interferometer.

A non-polarizing beam splitter divides the beam in two parts: one reference part and one measurement part.
The reference part passes a combining polarizer and a detector resulting in an interference signal of which only
the alternating current is measured using a band-pass filter, eliminating both the DC component and optical
frequencies. This signal can be represented by:

Iref =
1
2
E0

2 [cos (2π (f1 − f2) t + (φ01 − φ02))] . (3)

The measurement part is divided by a polarizing beam splitter in a reference arm and in a measurement arm.
The signal in the measurement arm receives a Doppler shift as a result of the moving corner cube, resulting in
a phase shift of the measurement signal compared to the reference signal5:

∆φ1 = 2π∆f1t =
4πn∆l

λ1
. (4)

with λ1 representing the wavelength of the light reflected by the mirror and n the refractive index of air in
the measurement path. With a polarizer the signal from the reference arm and the signal from the measurement
arm are combined and result in an interference pattern. From this interference pattern the measurement signal
is constructed containing the phase information and therefore containing the displacement of the corner cube. In
an ideal laser interferometer E1 enters the measurement arm and E2 enters the reference arm and the detected
signal can be represented by:

Imeas =
1
2
E0

2 [cos (2π (f1 − f2) t + (φ01 − φ02) + ∆φ1)] . (5)

Where f1 and f2 are the frequency of measurement and reference arm, φ01 and φ02 are the initial phase of
both frequencies and ∆φ1 is the phase difference as a result of the target movement. The measurement with
a laser interferometer is based on measuring the phase difference between the measurement signal (5) and the
reference signal (3). In a common laser interferometer the separation between both arms and therefore both
polarization states is not ideal, part of the measurement frequency enters the reference arm and part of the
reference frequency enters the measurement arm and gets a Doppler shift also. This results in an extra phase
term in the measurement signal which now can be represented as:

Imeasnl =
1
2
E0

2 [cos(2π (f1 − f2) t + (φ01 − φ02) + ∆φ1 +∆φnonlin)] . (6)

The calculation in the interferometer however uses only one frequency resulting in non-linearities in the
measurement results. The extra phase term therefore represents the non-linearity of the system.



3. PRINCIPLE OF QUADRATURE DETECTION WITH A LOCK-IN AMPLIFIER

A lock-in amplifier enables the phase detection between two signals with the same carrier frequency, due to a
method called Phase Sensitive Detection. This method enables the filtering of a certain frequency. Noise signals
with a different frequency are filtered out. For this method a reference frequency and phase is needed. In the
heterodyne laser interferometer 2 signals are generated:

Iref = A sin(2π(f1 − f2)t + φref ) (7)
Imeas = B sin(2π(f1 − f2)t + φmeas + φnonlin). (8)

Where Iref is the reference signal and Imeas stands for the measurement signal. These signals can well be
analysed using a lock-in amplifier. With use of a mixer these signals are multiplied and passed through a band
pass filter:

S0 =
1
2
AB cos(φref − φmeas − φnonlin). (9)

To enable a phase measurement a second reference signal, retarded π
2 in phase, is multiplied with the

measurement signal resulting in a sine function:

S90 =
1
2
AB sin(φref − φmeas − φnonlin). (10)

From simulations it is known that many harmonics of nonlinearity exist, however the first and second order
are dominant.6 Therefore the above mentioned signals can be rewritten as follows:

S0 = x0 + R cos(φ) (11)

S90 = y0 + R(
1
r
) sin(φ − α). (12)

Where the offset x0 and y0 gives a first order non-linearity and the ellipticity characterized by r and α gives
the second order non-linearity, R represents the amplitude of the signals.

4. MEASUREMENT RESULTS

With use of a Stanford Research SRS844 lock-in amplifier the phase quadrature measurement is carried out.
Both output signals are captured with a PC. After an initiating measurement the ellipse parameters are cal-
culated using a least square fit on the parameters of (11) and (12) using the method by Heydemann.2 These
parameters are used to compensate the interferometer system. The schematical setup is shown in figure 2. Note
that Picotto7 and Sacconi8 used a similar setup, just he uses a phase detector instead of a lock-in amplifier.

In order to verify the compensation method three kinds of measurements were done. First a measurement
of the nonlinearity resulting from a common path setup with use of a Babinet Soleil Compensator replacing the
interferometer optics is carried out. The second is a measurement of the entire laser interferometer including
the interferometer optics, both linear optics as well as high stable flat mirror optics. The final measurement
was a comparison of flat mirror laser interferometer and an inductive probe.
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Figure 2. Schematical representation of the setup.

4.1. Common path verification

The Babinet Soleil Compensator provides a common path for both polarization components, and therefore
cancels out any influence of the refractive index of air. It also provides a convenient way to apply an optical
path difference of parts of a wavelength. This optical path difference is produced due to a difference in refractive
index for two orthogonal polarization states. The phase difference introduced between both polarization axes
can be represented as9:

∆φ = 2π
∣
∣
∣
∣

n⊥
λ⊥0

− n‖
λ‖0

∣
∣
∣
∣
d. (13)

Where λ⊥0 and λ‖0 are the vacuum wavelengths of both polarization states, n⊥ and n‖ are the refractive
indices for both polarization arms and d represents the thickness of the Babinet Soleil Compensator. By varying
the thickness of the compensator (through movement of the wedges compared to each other, see figure 3) the
optical path difference between both polarization states can be varied. A rotation of the optics (left in figure 3)
around the laser beam axis can be simulated by rotating the Babinet Soleil compensator about the laser beam
axis.
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Figure 3. Schematical representation of the simulation of the interferometer optics with a Babinet Soleil
Compensator.

Measurements were caried out as following: in the experimental setup the Babinet Soleil Compensator is
shifted in small steps over a bit more than two wavelength path-difference. Both signals S0 and S90 are recorded
and a least-squares fit to equations 11 and 12 is made. From these data the corrected phase (φ) is derived and
compared to the uncorected phase φ = arctan−1(S90

S0
) as it is measured in commercially available systems. A

measurement was taken with a rotation of 10◦ of the Babinet Soleil Compensator. Figure 4 gives the corrected
and uncorrected results where on the right the S90 signal is plotted against the S0 signal and on the left the



phase deviation is re-calculated to a length deviation when linear optics would be used. The deviations from
the fitted curve indicate the remaining deviations of the system after correction. Assuming that noise in the
recorded intensities can be phase noise as well as amplitude noise, de deviations in amplitude can be considered
as a possible phase error10:

∆φ =
∆R

R
(14)

Note that this is a worst-case estimation: if the laser intensity fluctuates this will also give an amplitude
variation but not a phase variation. The non-linearity as it is measured in figure 4 without correction can
be characterised by a standard deviation of 4.4 nm; after correction this is reduced to a standard deviation of
0.008 nm. From model calculations6 and measurements of the laser polarization state11 this type of deviation
is known; it is also known that the deviation turns into a second-order deviation once the receiver is given the
same rotation as the optics (in this case the Babinet Soleil Compensator). The results of this experiment are
given in figure 5. Comparing the right hand figures 4 and 5 one can observe that in figure 4 the measured circle
is shifted downward relative to the undisterbed corrected circle and becomes somewhat elliptical. In figure 5
the centre point is shifted back and only the ellipticity remains. This is reflected in the fitted parameters: r
and α are similar in both figures, but in figure 5 the bias in y-direction is almost vanished. This is reflected
in a smaller linearity deviation for the uncorrected case at the left-hand of figure 5. In this case the standard
deviation of the measurement reduces from 1.17 nm for the uncompensated measurement to below 0.001 nm for
the corrected measurement.
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Figure 4. Results of a measurement with a rotated Babinet Soleil Compensator 10◦.
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Figure 5. Results of a measurement with a rotated Babinet Soleil Compensator and a rotated receiver
polarizer (both 10◦).



4.2. Verification of basic interferometer set-ups
To verify the effect of the optics as predicted in12 also two setups were built with interferometer optics. One
with linear optics and a second one with flat mirror optics. To generate a stable but slowly varying displacement
an aluminium distance tube was placed between the polarizing beamsplitter and the measurement optics. The
displacement was generated by warming up the tube by hand and then letting it cool down slowly to room
temperature. The result for the linear optics is given in figure 6. This figure shows that already without
compensation the non-linearity is within 1 nm. The compensation reduces the standard deviation of the non-
linearity to 0.0012 nm.
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Figure 6. Results of a measurement with linear optics.

The flat mirror optics gives a more peculiar behaviour, as depicted in figure 7. The same kind of behaviour
was noticed by Číp.13 By modelling the optics and laser head polarization errors it was tried to explain the
deviation. This can be done if the assumption is made that the optics were misaligned by 4.9◦. The right hand
sight of figure 7 gives the result of the model calculation. The model was based on a Jones matix calculation.
The polarization errors of the optics were measured by ellipsometry12 and the polarization error of the laserhead
was measured as explained in.11 The ellipticity of the laserhead was 1 : 148 for f1 and 1 : 168 for f2 in E-field
one left hand elliptical and one right hand elliptical. The non-orthogonality between both laser polarizations
was 0.1◦. The compensation reduces the standard deviation of the non-linearity from 0.35 nm down to 0.002 nm.

4.3. Comparison probe and flat mirror optics
In the laboratory of Precision Engineering at Eindhoven University of Technology a calibration system for
probes of Coordinate Measuring Machines was developed based on a flat mirror interferometer (see figure 8).

In earlier probe calibrations it appeared to show non-linearities.14 Therefore this system was tested also.
The results are given in figure 9. On the left hand side both uncompensated and compensated data are shown
of the setup as shown in figure 8. Due to the probe properties the improvement remains limited. On the right
hand of figure 9 the results are shown when the ellipticity of the laser head is increased by means of a rotated
λ
4 -plate. In this figure the reduction of the second order non-linearity is clearly visible. However a first order
non-linearity with the same order of magnitude as for the left-hand of the figure remains. For the future we
plan to test the setup on a traceable calibration setup in which no non-linearities are inherent.15

5. CONCLUSIONS
Phase measurement by lock-in technique was succesfully applied to a commercially available heterodyne laser
interferometer system operating at a frequency difference of 2.7 MHz. Applying the Heydemann correction to
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Figure 7. Results of a measurement with flat mirror optics (b1) and results of the simuated non-linearity
from these optics (b2).
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Figure 8. Measurement setup.

the measured signals reduces the periodic errors from several nanometers to less than 0.01 nm. The shape of
periodic errors found was consistent with model calculations for the used setups. This method can also be used
for measuring periodic errors of existing non-compensating setups.
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