
Towards software as a true engineering discipline: Analytical Software Design

N r . 3 2 0 1 0 16

P

The difference between precision and detail
Unlike other engineering disciplines, software (methodology) does not have enough

precision to allow any formal reasoning about the software itself. Consequently, most

requirements and design errors (“details”) are discovered typically too late, when

the system has been built. One improvement is to introduce mathematical methods

in such a way, that they scale, are economic to use, and that the key stakeholders

remain involved and are still able to validate the specifications based on such

mathematical methods. Analytical Software Design meets these requirements.

• Leon Bouwmeester •

Precision and detail: two small words that are often used as
if they have the same meaning, but which differ greatly.
Precision refers to the ability of a measurement to be
reproduced consistently; key factors are predictability and
exactness. Detail, on the other hand, refers to something
small or trivial enough to escape notice; it has a flavour of
“not important” about it.

The Eindhoven area is home to several companies that are
involved in building high-precision mechatronic
equipment. Precision – next to accuracy (degree of
closeness of measurements to the actual value) – often
affects their core business (in)directly. Therefore, one can
assume that all disciplines related to mechanics, optics,
physics, and electronics are well coordinated and aligned
within these types of companies. The combination of these
disciplines is directly related to the overall precision and
accuracy of the resulting equipment they build. Any failure
in this area is directly visible – sometimes even literally, as
explained by the Hubble example.

Hubble telescope
On 24 April 1990, the Hubble telescope was launched into
orbit from aboard the Discovery space shuttle. Almost
immediately afterwards it became clear that something was
wrong. While the pictures taken with Hubble were clearer
than those of ground-based telescopes, they were not the

pristine images promised. Analysis of these flawed images
showed that the problem was caused by the shape of the
primary mirror. Although it was probably the most precise
mirror ever made, with variations from the prescribed curve
of only 10 nm, it was too flat at the edges by about 2.2 μm,
which caused severe spherical aberration: light bouncing off
the centre of the mirror focuses in a different place than light
bouncing off the edges. Figure 1 shows a schematic
overview of the internals of the Hubble telescope.

Fortunately, scientists and engineers were dealing with a
well-understood optical problem (although in a unique
environment). For which they had a solution: a series of

Leon Bouwmeester joined Verum Software Technologies,
based in Waalre near Eindhoven, the Netherlands, in 2006,
and is currently working as a managing consultant. He
advises business and product management of the benefits of
Verum’s Analytical Software Design (ASD) technology, and is
responsible for the support of the customer’s architects and
senior designers in the application of ASD.

www.verum.com

Author

The difference between precision and detail

N r . 3 2 0 1 017

Observations
A couple of observations can be made about the Hubble
telescope and its flaw in the primary mirror. First, it was a
well-understood optics problem for which the mathematics
were known and described precisely. Hence, it was “easy”
to figure out a solution to resolve the spherical aberration
of the primary mirror. Second, it was this same
mathematics that allowed the engineers to verify their
designs during design time. They did not need to construct
the entire Hubble telescope and check whether the images
produced met the required quality. Third, as a consequence
all testing that was performed on the telescope was
intended to determine the quality of the telescope and not
to establish it. Fourth, an expensive mistake was made
during the verification of the primary mirror: the engineers
missed an important aspect, which was considered a detail.
They should have investigated more carefully the
difference between the main null corrector and the other
two null correctors. Fifth, engineering requires one to work
precisely while not losing sight of important details; any
mistake may lead to catastrophic failures and most of the
time costs a lot of money to fix. In the end, the suppliers of

small mirrors were used to intercept the light reflecting off
the mirror, correct for the flaw, and bounce the light to the
telescope’s science instruments. Several of the telescope’s
cameras were replaced by newer versions containing small
mirrors to correct the aberration [1]. As the Hubble was
already in orbit, the costs to resolve the spherical aberration
were about $150 million [2] [3]; a figure that does not even
include the cost of the shuttle repair mission itself – which
may easily have been about three times higher [4].

The root cause
A commission was established to determine how the error
could have arisen [5]. They found that the main null
corrector, a device used to measure the exact shape of the
mirror, had been incorrectly assembled: one lens was
wrongly spaced by 1.3 mm. During the polishing, the
surface of the mirror was analyzed with two other null
correctors, both of which correctly indicated that it was
suffering from spherical aberration. However, these test
results were ignored as it was believed that these two
correctors were less accurate than the primary one that
showed that the mirror was perfectly figured.

Figure 1. Schematic of the Hubble telescope.
(Copyright: NASA and STScl (NAS5-26555))

Towards software as a true engineering discipline: Analytical Software Design

N r . 3 2 0 1 0 18

A paradigm shift is needed
Is there a solution? Projecting the development of the
Hubble telescope onto software development implies the
introduction of mathematics or, more precise, formal
methods. However, formal software methods in industry
were never really successful: they did not scale very well,
they were expensive to use as highly-skilled people were
needed, and often the solution was more complex than the
original problem statement. Lastly, key stakeholders were
excluded from the development process as they were not
able to read the difficult mathematical notations and judge
whether what was described was what they intended.
However, when taking a closer look at other disciplines, it
can be seen that indeed mathematics are involved, but that
most, if not all, of the mathematics are hidden from the
engineers. For example, a construction engineer creates a
CAD/CAM model of a bridge from which automatically
the mathematics is generated needed to check whether the
bridge withstands earthquakes, the traffic, strong winds,
etc. A similar approach is desired for software
development: create a model, automatically generate the
mathematics and verify it for design errors and resolve
them until the design is error-free, but in such a way that it
can be applied in industrial-scale development, that it is
general purpose, easy to use and understand, and it is
indeed more economic to do so.

Analytical Software Design
The above requirements are met by Analytical Software
Design (ASD), a patented technology developed by Verum
Software Technologies. ASD is a component-based
technology that enables software specifications and designs

the telescope agreed to pay $25 million to settle claims
over the defects after which they were freed of further
liability claims [6].

Software
What about software? Is it as precise as the other
engineering disciplines? Unfortunately, the answer is no.
Most software (methodology) lacks a sound mathematical
foundation, which makes it impossible to reason about it
with sufficient precision; let alone perform design-time
verification like other engineering disciplines do.
Typically, only after implementation it can be determined
by testing whether the software is correct (verification:
does the software contain errors) and whether it is the
correct software (validation: does the software fulfil its
intended purpose). This means that only very late during
the development process – perhaps even too late –
feedback is obtained about the completeness and the
correctness of the requirements (including software),
architecture and design; paradoxically, the feedback only
refers to what can be expected – the unexpected is never
tested and therefore makes testing insufficient. Testing is
also more than testing code; it is also testing the
requirements, architecture, and design. Further, testing is
also more than determining the quality: it is also often the
phase where quality is established by resolving all errors
that were found and, as a result, testing becomes
unpredictable in terms of quality, progress, and cost.
Consequently, the decision to release software is often
made in a subjective manner [7].

But it gets even worse: during the requirements,
architecture, and design phases, reviews are organized to
get feedback and improve the quality of the specifications
as much as possible. Everybody knows that it is the most
cost effective to find and to resolve errors during these
phases. However, since most errors are injected during the
requirements, architecture, and design phases [8], but only
a small number are detected, a false impression is given
about the quality and the progress a software development
team is making. In practice, remarks on requirements and
architecture are often hand-waived as being details that can
be resolved later on, whereas in reality such remarks refer
to specification points that are not precise enough. The
consequences only become apparent when it is typically
too late: during testing. Figure 2. ASD technology provides design verification and code

generation.

N r . 3 2 0 1 019

have to be defined for all stimulus events. This process
ensures the completeness, whereas the model checking
provides the correctness.

A case: Philips’s prototype digital pathology
scanner
At the beginning of 2009, CCM (Centre for Concepts in
Mechatronics) in a consortium of companies embarked
upon an ambitious project to build a prototype digital
pathology scanner for Philips’s Digital Pathology business
venture. Besides the technological challenges, as it had to
be a fast scanner with the highest resolution and image
quality, it had to be realized in a time span of 12 months
where both software and hardware were developed
concurrently by several companies leaving only a short
period for test and integration.

CCM chose to use ASD for modelling, verifying, and
generating the code for the control software of the digital
pathology scanner for various reasons. First, at the time the
contract was awarded, the customer requirements were
good, but like in most other projects, certainly not
complete. ASD enabled CCM and the other consortium

to be mathematically verified at design time. After the
design has been verified, code is generated from the
verified design; see Figure 2. This technology is
incorporated in a tool chain called the ASD:Suite.

ASD uses two kinds of component models: first, interface
models that serve as the functional specification of the
component which is externally visible. Second, design
models that specify the internal design of this component.
Although ASD models have no visible mathematical
notation and are thus accessible to all project stakeholders,
they are sufficiently precise so that mathematical models
can be automatically generated from them. Where the
construction engineer uses tools to generate a finite-
element analysis model of a design, the software designer
uses the ASD:Suite to generate a process algebra model.
The process algebra model is then mathematically verified
against the functional specifications by the ASD:Suite by
means of model checking. Design errors uncovered by this
verification, such as race conditions, deadlocks, and
livelocks, are then easily removed by the designer by
updating the ASD models. These models are then verified
again, the process being repeated until all errors have been
removed. At the end of the process, the ASD design model
is correct and complete. The ASD:Suite is then used to
generate the corresponding implementation in MISRA C,
C++, C#, or Java, in such a way that the execution
semantics as described in the models are equivalent to the
mathematical model as well as the generated code. Since
ASD is component-based, it can be applied to all software
components that have discrete control behaviour; rather
than specifying and verifying an entire system, the steps
above are applied on the individual components. The
compositionality rules of the mathematics guarantee that
the composition of all these components together also
works, and therefore these rules provide the scalability
needed for industrial-size systems.

Figure 3 shows two fragments of an ASD model. Using
ASD, all behaviour of a component is explicitly described,
including all error scenarios. An ASD model is based on a
Sequence-Based Specification (SBS) methodology. This
methodology ensures that for all possible events in each
state that a system finds itself in, proper responses are
defined for all the events as well as the next state to go to.
During this rigorous specification process, new states can
be discovered where again proper responses and next states

Parts of an ASD model.
(a) ModelBuilder.

(b) ModelChecker.

a

b

Towards software as a true engineering discipline: Analytical Software Design

N r . 3 2 0 1 0 20

precision and detail since ASD identifies the minimum
level of detail required to satisfy its completeness property,
which in turn provides the level of precision required for
the purposes of formal verification. The only question that
remains is which company will be the first one that
develops software based on formal methods and accepts
liability for the software like other engineering disciplines?
Only then will software be a true engineering discipline.

References
[1]	 hubblesite.org
[2]	� articles.baltimoresun.com/keyword/repair-mission/

recent/2
[3]	� articles.baltimoresun.com/1992-10-27/

news/1992301003_1_elmer-telescope-mirror-hubble-
space-telescope

[4]	� www.nasa.gov/centers/kennedy/about/information/
shuttle_faq.html

[5]	� The Hubble Space Telescope Optical Systems Failure
Report, 1990. NASA Technical Report NASA-
TM-103443.

[6]	� articles.orlandosentinel.com/keyword/liability-claims
[7]	� H. Sassenburg, 2006. Design of a methodology to

support software release decisions, Ph.D. thesis,
University of Groningen, the Netherlands.

[8]	� C. Ebert and C. Jones, 2009. Embedded Software:
Facts, Figures, and Future, IEEE Computer, 42 (4),
pp. 42-52.

members to precisely specify all possible behaviour of the
prototype scanner. Second, during the requirements and
architecture phase ASD was used to specify all external
interfaces completely and correctly. These precise
specifications enabled concurrent engineering of the
hardware and software with the net result that integration
of the graphical user interface was performed within hours
and worked first time right, and that integration with the
hardware was also successfully performed within a couple
of days. Further, the first prototype of the scanner was to
be shown at an exhibition for pathologists. The scanner had
to be operational during the entire exhibition – even when
visitors would push the scanner’s buttons in all possible
combinations. Another effect of using ASD: all exceptional
behaviour has to be specified.
Initially, CCM had estimated to deliver about 70K lines of
code and to realize this with a team of 8-12 people; in the
end, the software was developed with 7 people while at the
same time the code size grew to over 200K lines of code as
the actual functionality increased. CCM would not have
met the demanding deadlines and quality without the use of
ASD, as the benefits went beyond producing defect-free
software; it also increased CCM’s productivity and
facilitated the concurrent engineering.

Conclusion
ASD has been successfully applied to various industrial-
scale projects where the digital pathology scanner is the
most recent one. It provides the necessary balance between

Figure 4. Philips’s prototype digital pathology scanner, for which the control software was designed using the ASD:Suite.

