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Towards a new 

generation of robots
The concept of variable stiffness actuators is of relevance to emerging robotics applications. 

In particular, the intrinsic compliance of the actuator can ensure safe human-robot and 

robot-environment interaction, even in unexpected collisions. From the analysis of two 

elementary design classes, lying at the basis of the 

majority of variable stiffness actuator designs, it is 

concluded that they are not energy efficient in changing 

the apparent output stiffness. This can be an issue 

in mobile applications, where the available energy 

is limited. Therefore, a new class of energy-efficient 

variable stiffness actuators is introduced. The conceptual 

design has been validated by means of simulations and 

experiments with a prototype realisation. 

The advancements in robotics have caused major 
revolutions in the industrial world. In fact, thanks to robots, 
repetitive manufacturing processes can be performed 
endlessly with high repeatability and precision. This has 
resulted in lower costs and high quality of products. In 
order to achieve the required precision, the robots are 
mechanically stiff and are actuated by high-gain 
controllers, resulting in accurate motion. Moreover, to 
increase productivity, the robots are generally moving fast. 
The combination of high-speed motion with stiff actuation 
makes these systems potentially very dangerous, which 
explains why they are operating in environments where 
humans are not allowed.
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energy-efficient variable stiffness actuators, in which the 
internal elastic elements can be used for storage of 
potential energy, reducing the required control energy. 
Energy efficiency is especially an advantage in the 
actuation of mobile systems, in which the available energy 
supply is limited, e.g., walking systems or prosthetics.

Variable stiffness actuator designs
In this section, some variable stiffness actuator designs are 
presented. The discussion is restricted to the class of 
actuators that internally have a number of elastic elements 
and a number of internal degrees of freedom that can be 
actuated. In particular, two elementary design classes are 
considered, which encompass the majority of variable 
stiffness actuator designs presented in the literature.

To focus on the working principle, the following 
assumptions are made:
• �the elastic elements can be represented by ideal springs, 

either linear or nonlinear;
• �the internal degrees of freedom are purely kinematic, i.e., 

they have no mass or internal friction;
• �other internal inertias and friction of the actuator can be 

neglected.

Moreover, it is assumed that the state 

� 

s of the springs, i.e. 
their elongation or compression, is completely determined 
by the configuration of the internal degrees of freedom, 
denoted by 

� 

q, and by the output position 

� 

r . Formally, this 
means that there exists a map 

damage or injuries. This approach is very similar to how humans perform tasks in 
unstructured environments: by pretension of the muscles, humans vary the stiffness of their 
joints to a specific level, appropriate for the task and the environment. 
 
In robots, the compliant behaviour can be achieved by proper control action 0, but to 
guarantee intrinsic safety, a mechanical compliance should be introduced into the joints of the 
system. Ideally, the compliance should be variable, so to adapt it to the requirements of the 
task, and thus a suitable trade- off between precision of motion and limited impact and 
interaction forces has to be found. For example, when moving slowly, the stiffness can be 
increased to achieve more accurate motion and it should be lower when the robot is moving 
fast, to ensure safe interaction in the case of a collision. 
 
The requirement of mechanically variable stiffness joints is fulfilled by a new generation of 
actuators, called variable stiffness actuators [1], [2]. This class of actuators is characterised by 
the property that their apparent output stiffness, and thus the apparent stiffness of the joint 
they are connected to, can be controlled independently of the actuator output position, and 
thus the joint position. This can be achieved in many ways.  
For example, the ‘Jack Spring’TM achieves a variable stiffness by changing the number of 
active coils in a spring in series with the actuator output [4]. The actuator presented in [3] uses 
a variable configuration of permanent magnets to emulate a variable stiffness at the actuator 
output. However, most variable stiffness actuator designs present a number of internal elastic 
elements, usually springs, and some internally actuated degrees of freedom. The intrinsic 
properties of the elastic elements and the configuration of the internal degrees of freedom 
define the apparent output stiffness [5], [8], [12], [13]. 
 
In this article, some commonly encountered working principles for variable stiffness actuators 
are presented, and particular advantages and disadvantages of the principles are highlighted. 
In particular, it is shown how to design energy efficient variable stiffness actuators, in which 
the internal elastic elements can be used for storage of potential energy, reducing the required 
control energy. Energy efficiency is especially an advantage in the actuation of mobile 
systems, in which the available energy supply is limited, e.g., walking systems or prosthetics. 
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Moreover, it is assumed that the state s of the springs, i.e. their elongation or compression, is 
completely determined by the configuration of the internal degrees of freedom, denoted by q, 
and by the output position r . Formally, this means that there exists a map ( ) srq a,:λ  such 
that s = λ q,r( ). The energy stored in the springs is a function of the state of the spring, i.e., 
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of the state of the spring, i.e., 

� 

H s( ), and thus either by 
changing the configuration 

� 

q or the output position 

� 

r , the 
energy stored in the springs can be changed. In particular, 
it follows: 

	

H s( ), and thus either by changing the configuration q or the output position r , the energy 
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This relation is used to investigate how efficient a particular actuator design is in terms of 
energy consumption in changing the apparent output stiffness, which is defined as: 
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i.e., the infinitesimal change in the force F  felt at the output, due to an infinitesimal change 
of output position r . 
 
In this article, an intuitive analysis and discussion of the designs is presented. For a thorough 
mathematical treatment, the reader is referred to [9], [11], [12]. 
 
Design I - Antagonistic spring setup 
The first design, schematically shown in Figure 1, is biologically inspired. Similar to the 
human muscular system, the design employs two springs in an antagonistic setup. The springs 
are nonlinear, to enable the independent control of output position and stiffness. Intuitively, 
by actuating the motors M1 and M2  in common mode, the pretension of the spring is 
increased and, therefore, the output is kept fixed but it becomes stiffer. While moving the 
motors in differential mode, the output position is changed. An example of an actuator of this 
type is the VSA [7], [8]. 
 
[* figure 1 *] 
 
Figure 1. Design I - Variable stiffness actuator based on an antagonistic spring setup. 
 
In this design, the springs are quadratic and, therefore, the force they exert is quadratic in the 
state, i.e., f = ks2, with k  the elastic constant of the springs. By investigation, it follows that 
the states of the two nonlinear springs are, respectively: 
 
 s1 = q1 − Rr, s2 = q2 + Rr  (3) 
 
The force F  at the output is then derived: 
 

 

F = f1 − f2

= R ks1
2( )− R ks2

2( )
= Rk q1 − Rr( )2

− Rk q2 + Rr( )2

= kR q1
2 − q2

2 − 2R q1 + q2( )r( )  

(4) 
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This relation is used to investigate how efficient a 
particular actuator design is in terms of energy 
consumption in changing the apparent output stiffness, 
which is defined as:

	          d F	  K := –––� (2)
	          d r

Compliant behaviour
In new emerging robotics applications, such as prosthetics, 
rehabilitation devices, and service robotics, human-robot and 
robot-environment interactions are an integral part. In such 
applications, the robotic system should show a compliant 
behaviour to prevent instability, damage or injuries. This 
approach is very similar to how humans perform tasks in 
unstructured environments: by pretension of the muscles, 
humans vary the stiffness of their joints to a specific level, 
appropriate for the task and the environment.

In robots, the compliant behaviour can be achieved by 
proper control action [6], but to guarantee intrinsic safety, a 
mechanical compliance should be introduced into the joints 
of the system. Ideally, the compliance should be variable, 
so to adapt it to the requirements of the task, and thus a 
trade-off between precision of motion and limited impact/
interaction forces has to be found. For example, when 
moving slowly, the stiffness can be increased to achieve 
more accurate motion and it should be lower when the 
robot is moving fast, to ensure safe interaction in the case 
of a collision.

The requirement of mechanically variable stiffness joints is 
fulfilled by a new generation of actuators, called variable 
stiffness actuators [1], [2]. This class of actuators is 
characterised by the property that their apparent output 
stiffness, and thus the apparent stiffness of the joint they 
are connected to, can be controlled independently of the 
actuator output position, and thus the joint position. This 
can be achieved in many ways. 
For example, the ‘Jack Spring’TM achieves a variable 
stiffness by changing the number of active coils in a spring 
in series with the actuator output [4]. The actuator 
presented in [3] uses a variable configuration of permanent 
magnets to emulate a variable stiffness at the actuator 
output. However, most variable stiffness actuator designs 
present a number of internal elastic elements, usually 
springs, and some internally actuated degrees of freedom. 
The intrinsic properties of the elastic elements and the 
configuration of the internal degrees of freedom define the 
apparent output stiffness [5], [8], [12], [13].

In this article, some commonly encountered working 
principles for variable stiffness actuators are presented, and 
particular advantages and disadvantages of the principles 
are highlighted. In particular, it is shown how to design 
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Using the definition (2), from (4), the apparent output 
stiffness 

� 

K  is given by:

	

� 

K = 2kR2 q1 + q2( )

Observe that by changing 

� 

q1 and 

� 

q2  in common mode, i.e., 

Using the definition (2), from (4), the apparent output stiffness K  is given by: 
 
 K = 2kR2 q1 + q2( ) 
 
Observe that by changing q1 and q2  in common mode, i.e., 21 qq && = , the stiffness is changed. 
In differential mode, i.e., 21 qq && −= , the stiffness remains constant, while the output position 
changes. 
 
The time derivative of (3) in matrix form is given by: 
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The matrix A  is a full-rank matrix, and, thus, regardless of the choice for 1q&  and 2q& , there is 
always a change of energy in the springs, i.e., using (1), 0≠H&  for all 0≠q& . In particular, 
when changing the stiffness, energy is put in the springs and internally stored, and therefore 
not usable for doing work on the load. Intuitively, by pretensioning the springs, the energy 
level in the springs increases, but since both springs are equally elongated, the forces on the 
output balance and hence the output position does not change. Therefore, this design is not 
energy efficient in the change of its apparent output stiffness. 
 
Design II - Decoupled stiffness and position change 
In the previous design, the springs have to be pretensioned simultaneously to change the 
stiffness, while a differential motion of the internal degrees of freedom leads to a change of 
the output position. This observation has led to designs in which these two operations are 
decoupled and controlled by separate actuators. The design is schematically depicted in 
Figure 2. The linear motor M2  changes the degree of freedom q2 , which realises a change of 
stiffness, while the rotational degree of freedom q1, actuated by the rotational motor M1, 
changes the output of the actuator with respect to the equilibrium position of the pulley. The 
VS-Joint [13] is an example of this type of design. 
 
[* figure 2 *] 
 
Figure 2. Design II - Variable stiffness actuator with complete decoupling between the change 
of the output position and the output stiffness. 
 
The analysis of this design is nearly identical to that of the previous design. Let the springs be 
quadratic, and by investigation of the kinematics, it follows that: 
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The matrix A  is a full-rank matrix, and, thus, regardless of the choice for 1q&  and 2q& , there is 
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level in the springs increases, but since both springs are equally elongated, the forces on the 
output balance and hence the output position does not change. Therefore, this design is not 
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In this article, an intuitive analysis and discussion of the 
designs is presented. For a thorough mathematical 
treatment, the reader is referred to [9], [11], [12].

Design I - Antagonistic spring setup
The first design, schematically shown in Figure 1, is 
biologically inspired. Similar to the human muscular 
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setup. The springs are nonlinear, to enable the independent 
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M2  in common mode, the 
pretension of the spring is increased and, therefore, the 
output is kept fixed but it becomes stiffer. While moving 
the motors in differential mode, the output position is 
changed. An example of an actuator of this type is the VSA 
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This relation is used to investigate how efficient a particular actuator design is in terms of 
energy consumption in changing the apparent output stiffness, which is defined as: 
 

 
r
FK

δ
δ=:

 
(2) 

 
i.e., the infinitesimal change in the force F  felt at the output, due to an infinitesimal change 
of output position r . 
 
In this article, an intuitive analysis and discussion of the designs is presented. For a thorough 
mathematical treatment, the reader is referred to [9], [11], [12]. 
 
Design I - Antagonistic spring setup 
The first design, schematically shown in Figure 1, is biologically inspired. Similar to the 
human muscular system, the design employs two springs in an antagonistic setup. The springs 
are nonlinear, to enable the independent control of output position and stiffness. Intuitively, 
by actuating the motors M1 and M2  in common mode, the pretension of the spring is 
increased and, therefore, the output is kept fixed but it becomes stiffer. While moving the 
motors in differential mode, the output position is changed. An example of an actuator of this 
type is the VSA [7], [8]. 
 
[* figure 1 *] 
 
Figure 1. Design I - Variable stiffness actuator based on an antagonistic spring setup. 
 
In this design, the springs are quadratic and, therefore, the force they exert is quadratic in the 
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of the output position. This observation has led to designs 
in which these two operations are decoupled and controlled 
by separate actuators. The design is schematically depicted 
in Figure 2. The linear motor 

� 

M2  changes the degree of 
freedom 

� 

q2 , which realises a change of stiffness, while the 
rotational degree of freedom 

� 

q1, actuated by the rotational 
motor 

� 

M1, changes the output of the actuator with respect 
to the equilibrium position of the pulley. The VS-Joint [13] 
is an example of this type of design.

The analysis of this design is nearly identical to that of the 
previous design. Let the springs be quadratic, and by 
investigation of the kinematics, it follows that:
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The matrix A  is a full-rank matrix, and, thus, regardless of the choice for 1q&  and 2q& , there is 
always a change of energy in the springs, i.e., using (1), 0≠H&  for all 0≠q& . In particular, 
when changing the stiffness, energy is put in the springs and internally stored, and therefore 
not usable for doing work on the load. Intuitively, by pretensioning the springs, the energy 
level in the springs increases, but since both springs are equally elongated, the forces on the 
output balance and hence the output position does not change. Therefore, this design is not 
energy efficient in the change of its apparent output stiffness. 
 
Design II - Decoupled stiffness and position change 
In the previous design, the springs have to be pretensioned simultaneously to change the 
stiffness, while a differential motion of the internal degrees of freedom leads to a change of 
the output position. This observation has led to designs in which these two operations are 
decoupled and controlled by separate actuators. The design is schematically depicted in 
Figure 2. The linear motor M2  changes the degree of freedom q2 , which realises a change of 
stiffness, while the rotational degree of freedom q1, actuated by the rotational motor M1, 
changes the output of the actuator with respect to the equilibrium position of the pulley. The 
VS-Joint [13] is an example of this type of design. 
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Figure 2. Design II - Variable stiffness actuator with complete decoupling between the change 
of the output position and the output stiffness. 
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quadratic, and by investigation of the kinematics, it follows that: 
 
 s1 = q2 − Rα, s2 = q2 + Rα  (5) 
 
with α = r − q1 + π

2 . The output force is: 
 

	� (5)

with 

Using the definition (2), from (4), the apparent output stiffness K  is given by: 
 
 K = 2kR2 q1 + q2( ) 
 
Observe that by changing q1 and q2  in common mode, i.e., 21 qq && = , the stiffness is changed. 
In differential mode, i.e., 21 qq && −= , the stiffness remains constant, while the output position 
changes. 
 
The time derivative of (3) in matrix form is given by: 
 

 r
R
R

q
q

s
s

A

&
&

&

321
&

&







−
+
















=









2

1

2

1

10
01

 

The matrix A  is a full-rank matrix, and, thus, regardless of the choice for 1q&  and 2q& , there is 
always a change of energy in the springs, i.e., using (1), 0≠H&  for all 0≠q& . In particular, 
when changing the stiffness, energy is put in the springs and internally stored, and therefore 
not usable for doing work on the load. Intuitively, by pretensioning the springs, the energy 
level in the springs increases, but since both springs are equally elongated, the forces on the 
output balance and hence the output position does not change. Therefore, this design is not 
energy efficient in the change of its apparent output stiffness. 
 
Design II - Decoupled stiffness and position change 
In the previous design, the springs have to be pretensioned simultaneously to change the 
stiffness, while a differential motion of the internal degrees of freedom leads to a change of 
the output position. This observation has led to designs in which these two operations are 
decoupled and controlled by separate actuators. The design is schematically depicted in 
Figure 2. The linear motor M2  changes the degree of freedom q2 , which realises a change of 
stiffness, while the rotational degree of freedom q1, actuated by the rotational motor M1, 
changes the output of the actuator with respect to the equilibrium position of the pulley. The 
VS-Joint [13] is an example of this type of design. 
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Figure 2. Design II - Variable stiffness actuator with complete decoupling between the change 
of the output position and the output stiffness. 
 
The analysis of this design is nearly identical to that of the previous design. Let the springs be 
quadratic, and by investigation of the kinematics, it follows that: 
 
 s1 = q2 − Rα, s2 = q2 + Rα  (5) 
 
with α = r − q1 + π

2 . The output force is: 
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K  is given by:
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which confirms that the change of the stiffness only 
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q2  and, therefore, is 
decoupled from the control of the output position, which 
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Observe that the matrix A  is full rank, and thus that, in order to increase the apparent output 
stiffness, energy has to be stored in the springs, i.e., 0≠H&  for all 0≠q& . Intuitively, in this 
design, increasing q2  indeed increases the energy level in the springs, but the output position 
does not change. Therefore, this design is not energy efficient in the change of the apparent 
output stiffness. 
 
A novel energy-efficient design 
The observations made in analysing the previous two designs, regarding inefficient use of 
energy in changing the stiffness, gave the motivation to derive a new energy-efficient 
concept. In particular, the concept is such that the kinematics allows a change of stiffness 
without any change in the energy stored in the springs. 
 
The concept, named vsaUT, is shown in Figure 3, and is extensively described in [12]. The 
working principle is based on a linear zero-free-length spring, connected to the output via a 
lever arm of variable length. How the spring is sensed at the output depends on the 
transmission ratio implemented by the lever arm. The effective length of the lever arm, and 
thus of the output stiffness, is determined by the linear degree of freedom q1, while the linear 
degree of freedom q2  controls the output position. Also AwAS [5] is based on this concept, 
but it realises a rotational implementation. 
 
[* figure 3 *] 
 
Figure 3. Conceptual drawing of vsaUT, a new energy-efficient variable stiffness actuator 
design. 
 
Assuming that the base length l  is large compared to the elongation of the spring, and thus 
α = 0, from analysing the kinematics, the length of the spring is given by: 
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Observe that the matrix A  is full rank, and thus that, in order to increase the apparent output 
stiffness, energy has to be stored in the springs, i.e., 0≠H&  for all 0≠q& . Intuitively, in this 
design, increasing q2  indeed increases the energy level in the springs, but the output position 
does not change. Therefore, this design is not energy efficient in the change of the apparent 
output stiffness. 
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The concept, named vsaUT, is shown in Figure 3, and is extensively described in [12]. The 
working principle is based on a linear zero-free-length spring, connected to the output via a 
lever arm of variable length. How the spring is sensed at the output depends on the 
transmission ratio implemented by the lever arm. The effective length of the lever arm, and 
thus of the output stiffness, is determined by the linear degree of freedom q1, while the linear 
degree of freedom q2  controls the output position. Also AwAS [5] is based on this concept, 
but it realises a rotational implementation. 
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Figure 3. Conceptual drawing of vsaUT, a new energy-efficient variable stiffness actuator 
design. 
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Observe that the matrix A  is full rank, and thus that, in order to increase the apparent output 
stiffness, energy has to be stored in the springs, i.e., 0≠H&  for all 0≠q& . Intuitively, in this 
design, increasing q2  indeed increases the energy level in the springs, but the output position 
does not change. Therefore, this design is not energy efficient in the change of the apparent 
output stiffness. 
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transmission ratio implemented by the lever arm. The effective length of the lever arm, and 
thus of the output stiffness, is determined by the linear degree of freedom q1, while the linear 
degree of freedom q2  controls the output position. Also AwAS [5] is based on this concept, 
but it realises a rotational implementation. 
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design. 
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Observe that the matrix A  is full rank, and thus that, in order to increase the apparent output 
stiffness, energy has to be stored in the springs, i.e., 0≠H&  for all 0≠q& . Intuitively, in this 
design, increasing q2  indeed increases the energy level in the springs, but the output position 
does not change. Therefore, this design is not energy efficient in the change of the apparent 
output stiffness. 
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Observe that A  is not a full rank matrix, which implies that there exist 0≠q&  such that 

0=H& , i.e., the configuration q, and thus the apparent output stiffness, can be changed 
without changing the energy in the spring. 
 
Experimental validation 
To validate that the concept indeed works as described in the theory, a simulation model and a 
prototype were built, as shown in Figure 4 and presented in [10]. 
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The following experiment was conducted: the degree of freedom q1 is preset to its maximum 
value, and the spring is preloaded by constraining the output motion r  and by setting q2  to 
some desired value. Using a force sensor, the force exerted at the output is measured, which is 
a direct measure of the stiffness, as follows from (2). Then, in equal steps, q1 is moved to its 
minimum position, while q2  is actuated such that 0=qA& , i.e., the spring length remains the 
same. At each step change of q1, the force is measured. This experiment is shown in Figure 5, 
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Observe that the matrix A  is full rank, and thus that, in order to increase the apparent output 
stiffness, energy has to be stored in the springs, i.e., 0≠H&  for all 0≠q& . Intuitively, in this 
design, increasing q2  indeed increases the energy level in the springs, but the output position 
does not change. Therefore, this design is not energy efficient in the change of the apparent 
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transmission ratio implemented by the lever arm. The effective length of the lever arm, and 
thus of the output stiffness, is determined by the linear degree of freedom q1, while the linear 
degree of freedom q2  controls the output position. Also AwAS [5] is based on this concept, 
but it realises a rotational implementation. 
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Observe that A  is not a full rank matrix, which implies that there exist 0≠q&  such that 

0=H& , i.e., the configuration q, and thus the apparent output stiffness, can be changed 
without changing the energy in the spring. 
 
Experimental validation 
To validate that the concept indeed works as described in the theory, a simulation model and a 
prototype were built, as shown in Figure 4 and presented in [10]. 
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value, and the spring is preloaded by constraining the output motion r  and by setting q2  to 
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a direct measure of the stiffness, as follows from (2). Then, in equal steps, q1 is moved to its 
minimum position, while q2  is actuated such that 0=qA& , i.e., the spring length remains the 
same. At each step change of q1, the force is measured. This experiment is shown in Figure 5, 
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A second experiment, shown in Figure 7, shows that in this concept no energy is stored in the 
spring that cannot be used to do work at the output. In particular, a step setpoint (thick line) 
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Figure 7. Actuation of a load with the vsaUT. Both simulation (dashed) and experimental 
(solid) results indicate that no energy is internally stored in the actuator. 
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literature. From the analysis, it has been concluded that these designs are not energy efficient 
in changing the apparent output stiffness, which can be an issue in mobile applications, where 
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Triggered by this observation, a new class of energy efficient variable stiffness actuators has 
been introduced. The conceptual design has been validated by means of simulations and 
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showing that the concept is indeed working as predicted by 
theory.Figure 4. CAD drawing and photograph of the vsaUT prototype.

Figure 5. Experiment for determining the apparent output 
stiffness in the vsaUT prototype.

Figure 6. Evaluation of the apparent output stiffness by force 
measurements in the vsaUT prototype in theory, in simulations 
and in the experimental measurements.
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Observe that A  is not a full rank matrix, which implies that there exist 0≠q&  such that 

0=H& , i.e., the configuration q, and thus the apparent output stiffness, can be changed 
without changing the energy in the spring. 
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A second experiment, presented in Figure 7, shows that in 
this concept no energy is stored in the spring that cannot be 
used to do work at the output. In particular, a step setpoint 
(thick line) for the output position, connected to a load, has 
been used. Due to the inertial properties of the load, the 
spring is initially compressed, but all energy stored due to 
this effect is eventually used for actuation, since the spring 
is not loaded at the end of the experiment.

Conclusion
The concept of variable stiffness actuators and their 
relevance to new emerging robotics applications have been 
presented. In particular, the intrinsic compliance of the 
actuator ensures safe human-robot and robot-environment 
interaction, even in unexpected collisions.

Two elementary design classes were presented and 
analysed. The working principles of these designs lie at the 
basis of the majority of variable stiffness actuator designs, 
proposed in the literature. From the analysis, it has been 
concluded that these designs are not energy efficient in 
changing the apparent output stiffness, which can be an 
issue in mobile applications, where the available energy is 
limited.

Triggered by this observation, a new class of energy- 
efficient variable stiffness actuators has been introduced. 
The conceptual design has been validated by means of 
simulations and experiments with a prototype realisation. 
The results show that the concept works as predicted by 
theory, and thus will form a new category of energy-
efficient actuator designs.
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Figure 7. Actuation of a load with the vsaUT. Both simulation 
(dashed) and experimental (solid) results indicate that no energy 
is internally stored in the actuator.




