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Introduction
Parasitic or unwanted resonance frequencies are often 
a limiting factor for the performance of precision 
mechatronic systems [1]. Good tracking is only achieved 
if a machine operates within its servo bandwidth, which 
typically cannot exceed the first parasitic resonance 
frequency. Furthermore, disturbance sources such as 
floor vibrations can be amplified by parasitic resonances, 
resulting in unwanted vibration of the end-effector. 
Lightweight and stiff design is conventionally used to ensure 
that any parasitic resonances have high associated resonance 
frequencies. 

However, with a push for higher cycle times and better 
disturbance suppression, damping the parasitic resonances 
is a crucial tool for achieving even more performance. 
Parasitic resonance frequencies may depend on the position 
of the manipulator in its workspace. Depending on the 
machine configuration, this is due to shifting end-effector 
mass, changing support stiffness or a combination of both. 

As a simple example, consider a gantry robot as depicted 
in Figure 1. As the carriage moves along the gantry, 
the support stiffness in the vertical direction changes 
significantly. Consequently, the parasitic resonance 
frequency associated with the depicted z-motion depends 
greatly on the y-position of the gantry. In the presence of 
floor vibrations or a direct disturbance force d, this low 
support stiffness and resonance frequency can lead to large 
vibrations in the z-direction. This position-dependent 
behaviour makes robust damping of parasitic resonances 
over the entire workspace a non-trivial task, especially 

Parasitic resonances are often limiting the performance of precision machinery. 
The associated resonance frequency and mode shape may change over the workspace 
of the machine, making robust suppression or damping of these parasitic resonances 
a non-trivial task. This article outlines an active damping method for the suppression of 
position-dependent parasitic resonances through small integrated piezoelectric sensors 
and actuators, and shows its application to a flexure mechanism. Applying a resonant 
control technique, the limited actuation budget is efficiently used. A scheduling 
approach is followed to deal with the position-dependent behaviour. This leads to a 
significant improvement of the disturbance sensitivity of the flexure-based manipulator.

when the use of passive materials is restricted by design 
constraints, such as vacuum or cryogenic compatibility.

Similar to the gantry example, position-dependent support 
stiffness can be observed in flexure mechanisms. Such 
mechanisms achieve motion through the use of elastic 
elements, referred to as flexures. As the mechanism is 
deflected, the induced deformation of the flexure elements 
decreases the stiffness they provide in support directions 
[2]. Consequently, flexure mechanisms perform well 
in the centre of their workspace, but exhibit low parasitic 
resonance frequencies for larger deflections. 

This article showcases an active damping approach for 
position-dependent parasitic vibrations. A flexure-based 
manipulator, shown in Figure 2, is used as a demonstration 
case. As the mechanism performs its nominal motion, floor 
vibrations and direct disturbance forces lead to excitation of 
a parasitic resonance. The associated resonance frequency 

1

Illustration of a position-dependent resonance in a deformable gantry. 
As the gantry with mass M moves along y, the support stiffness in 
the z-direction decreases. Therefore, the system becomes more sensitive 
to a disturbance force d.
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depends on the nominal deflection of the mechanism. 
A small piezoelectric sensor and actuator are integrated in one 
of the flexures. Combining these with a scheduled resonant 
controller, the parasitic resonance peak in the transfer from 
a direct disturbance to parasitic displacement is actively 
suppressed over a large portion of the workspace. In turn, this 
results in significantly lower vibrations at the end-effector.
The remainder of this article starts with outlining the 
vibration-suppression approach. Thereafter, the flexure hinge 
case is discussed. Finally, experimental results are presented.

Vibration-suppression approach
Figure 3 shows the control diagram of the active vibration-
suppression approach. The system P has nominal motion y, 
actuated by force f, and parasitic motion z, excited by 
disturbance d. In the vibration-suppression approach, 
it is proposed to integrate small piezoelectric actuators 
and sensors that couple with the problematic resonance. 
The actuation of the nominal motion is conventionally 
controlled by a PID controller CPID combined with mass 
feedforward ms2. For flexure mechanisms, it is sensible to 
also include a stiffness compensation term –k that cancels 
the stiffness of the flexures in the actuation direction.

For the suppression of the parasitic resonances, a scheduled 
Positive Position Feedback controller (PPF) [3] is used. 

Such a controller mimics the behaviour of a tuned mass 
damper, damping predominantly at the resonance 
frequency. The controller structure is given by:

	
Here, s is the Laplace variable, K is the gain of the controller, 
ωc the controller resonance frequency and ζc the relative 
damping of the controller. 
In order for the controller to optimally suppress the 
resonance, one has to choose ωc slightly higher than 
the resonance frequency of the to be suppressed parasitic 
vibration mode ωp. Since ωp changes with deflection, 
the controller can be scheduled with relative ease by taking 
ωc(r) = ηωp(r), where η is a constant and ωp(r) is the 
parasitic resonance frequency as a function of the reference 
r for the nominal displacement y. The gain K and relative 
damping ζc can be taken as a constant. As long as the gain K 
is below a given threshold, there is little to no risk of 
controller instability.
The values for r, K and ζc can be chosen such that the H2 
norm of the transfer from disturbance force d to parasitic 
displacement z is minimised [4]. 

Image of the flexure-based manipulator. The nominal motion is 
actuated by the Lorentz actuator and measured with an encoder. 
The parasitic motion is excited using a disturbance force, which is 
generated with the shaker. The capacitive sensors are used to measure 
the parasitic movement of the end-effector with respect to the base.
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The proposed control approach. The nominal motion y, actuated 
with f, is controlled with a PID controller CPID in combination with 
stiffness compensation –k and mass feedforward ms2. The piezoelectric 
actuator voltage vact and sensor voltage vsens are used by the Positive 
Position Feedback controller CPPF to suppress the parasitic resonance. 
CPPF is scheduled with the the reference of the nominal motion r.

The nominal motion y of the manipulator and the parasitic motion z of the manipulator. The parasitic motion has an equivalent mass of Meq  
and a support stiffness kp(y) that depends on the nominal motion.
(a)	 Top view of the manipulator showing the nominal motion.
(b)	 Side view of the manipulator showing the parasitic motion.
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Application to the flexure-based manipulator
Figure 2 shows the considered flexure-based manipulator.  
It positions a sample at the end-effector along a tangential 
trajectory by making the nominal motion shown in Figure 4a. 
As it performs this positioning task, disturbance forces lead 
to excitation of the parasitic motion shown in Figure 4b. 
Such disturbance forces can originate from various sources. 
Here, a direct disturbance force is emulated using the shaker 
mounted to the end-effector.

Figure 5 shows a mode shape that is the major contribution 
to vibrations at the end-effector. If the mechanism is in its 
undeflected position, all flexures are straight and are loaded 
in extension. As a result, the support stiffness is high and 
the mechanism is not very sensitive to disturbance forces. 
However, as the mechanism is deflected, the nominal 
motion introduces bending in the flexures. As a result, the 
flexures now also bend and twist slightly when the parasitic 
mode shape is excited. This results in a significant decrease 
of the support stiffness and associated resonance frequency.
As mentioned in the previous section, the aim is to integrate 

a small piezoelectric actuator and sensor that will actively 
suppress this resonance. Due to gravity, the loading of the 
flexures is such that the bottom-most flexure exhibits the 
greatest relative deflection when the parasitic mode shape 
is excited. By placing piezoelectric material on this bottom 
flexure, good sensing and actuation of the parasitic 
resonance can be achieved. Two piezoelectric patches are 
placed on either side of the flexure, at the location indicated 
in Figure 2. One of the patches is used for sensing and the 
other is used for actuation. Since the piezoelectric patches 
predominantly actuate and sense the bending of the flexure, 
the best coupling with the parasitic mode shape is expected 
when the mechanism is deflected.

With the integrated piezoelectric sensor and actuator, the 
flexure mechanism can be characterised. The dependence 
of the problematic parasitic resonance ωp on the nominal 
deflection y is determined. Simultaneously, in line with [4], 
the tuning of CPPF is set as:

	 η = ωc / ωp = 1.65,  ζc = 0.07,  K = 12.9 [V/V]

y = -15 mm
ωp = 50 Hz

y = 3 mm
ωp = 86 Hz

y = 15 mm
ωp = 64 Hz

5a 5b 5c

6a 6b

The parasitic resonance for various nominal deflections y. The shown mode amplifies the parasitic displacement z due to disturbance d. The flexures are coloured yellow for contrast.

The magnitude plots of the frozen frequency response from disturbance force d to the out-of-plane deflection z. The black lines indicate 
the magnitude plot of the frequency response for a given nominal movement y. 
(a)	 Without active damping.
(b)	� With active damping, with a transparent overlay of the undamped response on top. It can be seen that the first resonance peak is suppressed 

over the entire workspace, whereas the rest of the transfer is not significantly altered.
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8Experimental results
Figure 6a shows how the magnitude plot of the transfer 
from disturbance force d to parasitic displacement z 
depends on the nominal deflection of the mechanism. 
The resonance peak associated with the previously discussed 
parasitic resonance is by far the largest peak over the entire 
workspace. In the centre of the workspace, this resonance 
peak is relatively low and the resonance frequency is 
relatively high. This is due to the more optimal loading 
of the flexures. However, as the nominal deflection of the 
mechanism increases, this resonance peak becomes higher 
and the resonance frequency decreases. 

With the active damping strategy, the first resonance can 
be suppressed and the response plot given in Figure 6b is 
obtained. It can be seen that the resonance peak is greatly 
reduced, especially when the mechanism is deflected. This 
results in a resonance peak reduction of up to a factor 10 
for certain deflections. In the centre of the workspace, the 
resonance peak is difficult to suppress since the coupling 
of the piezoelectric patches with the parasitic resonance 
is limited. Figure 7 shows sections of Figure 6b for several 
nominal deflections.

In order to evaluate the sensitivity of the flexure mechanism 
to disturbance force d, a white-noise disturbance force is 
applied using the shaker with a magnitude of 6·10–5 N/√Hz 
in the frequency range 10-300 Hz. The resulting root mean 
square (RMS) value of the parasitic displacement is shown in 
Figure 8. It can be seen that in the undamped case, the RMS 
parasitic displacement becomes larger with the deflection 
of the mechanism. When the active damping is enabled, 
the parasitic displacement in the centre of the workspace 
is similar. However, when the mechanism is deflected, 
the parasitic displacement is smaller than at the centre,  
with a reduction factor of up to 2.5 compared to the 
undamped case.

Conclusions
This article proposed a vibration-suppression approach for 
position-dependent parasitic resonances. In the approach, 
the position-dependent parasitic resonances are actively 
suppressed over the entire workspace using small integrated 
sensors and actuators. The low build volume and ability 
to deal with position-dependent parasitic resonances make 
the approach a viable alternative to conventional damping 
methods for a wide class of manipulators.

For the considered flexure hinge, it was shown that a para
sitic resonance can be significantly suppressed by integrating 
a small piezoelectric sensor and actuator in one of the 
flexures. This results in a much better disturbance 
sensitivity of the flexure-based manipulator.

This article is based on previous work presented at the 
ASPE Annual Meeting [5]. Academic papers detailing 
the tuning of the PPF controller [4] and the suppression 
of multiple bandwidth-limiting modes [6] are currently 
under consideration for publication.
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Frozen frequency response for several nominal movements y. The 
dashed lines indicate the frequency response without active damping 
and the solid lines the frequency response with active damping.

Root mean square parasitic deformation RMS(z) due to the white-noise 
disturbance force d.
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