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Introduction
The achievable performance of mechatronic positioning 
systems is facing limitations in the current state-of-art design 
paradigm. To meet future requirements on production speed, 
quality and cost, it is envisaged that a significant increase 
is required in the complexity of positioning systems. This 
leads to the manifestation of increasingly complex system 
behaviour. Examples include increasing numbers of motion 
axes, the presence of flexible dynamical behaviour in the 
control bandwidth and the associated coupling between axes, 
and increased susceptibility to disturbances from multiple 
physical domains such as friction, hysteresis, thermal effects, 
acoustics, noise from electronics, etc. 

Mechatronic system design approaches typically focus on 
excellent electromechanical designs [1], which subsequently 
simplify control design. It is envisioned that this design 
paradigm will become infeasible, e.g., due to excessive cost 
of materials with favourable (thermo-)mechanical properties. 
Hence, the foreseen trend of increasing system complexity 
motivates to reconsider the holistic system design process, 
which ranges from sophisticated electromechanical designs 
to intelligent control and software solutions.

On another hand, explosive progress has been made in 
the field of machine learning (ML) over the past decades. 
Spurred by the availability of data and low-cost computation 
[2], this has led to astounding results in complex applications, 
for instance achieving superhuman performance in Go 
and Atari games [19]. Moreover, these results are achieved 
without any prior knowledge of the environment dynamics. 

This raises the question what ML has to offer for high-tech 
positioning equipment, and in particular how exploitation 

The recent explosive progress in machine-learning (ML) applications raises the 
question what ML has to offer for industrial motion-control systems. We aim to explore 
how the power of ML can be safely harnessed for real physical machines, and provide 
insight into design aspects that contribute to success. Successful ML-based 
applications at Sioux Technologies are presented, providing a hands-on perspective 
on the performance potential in motion-control applications. 

of ML techniques can enable a revolution in dealing with 
the increasing system complexity during the holistic 
mechatronic system design process. Indeed, a huge 
performance potential seems readily attainable, as both data 
and computing power are abundantly available in high-tech 
mechatronic systems.

However, there is a fundamental difference between the 
presented examples of ML applications [19] and high-tech 
positioning systems: interaction with the physical world. 
Without interaction with physical systems, there need 
to be only mild requirements on the training process, 
i.e., required training time and convergence properties. 
Conversely, mechatronic applications, where interaction 
with the physical world is pivotal, have very strict 
requirements on the training process. 
Most successful ML applications to mechatronic systems 
(for example, drone racing [5], tokamak plasma control [6], 
stratospheric balloon navigation [7], and bipedal robot 
soccer [8]) mitigate these challenges by training the ML 
algorithm in a simulation environment. However, the 
resulting control performance is directly determined by 
the quality of the system knowledge that is used to build 
the simulator. Especially in view of the foreseen increasing 
system complexity of high-tech positioning equipment, 
this excessive modelling burden is undesired.

The aim of this article is to explore opportunities and 
challenges associated with ML for high-tech motion-control 
applications. Successful adoption of ML imposes a unique 
set of requirements, since high-tech manufacturing 
machines are cyber-physical systems that interact with 
the real world, and machine downtime has a huge impact 
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on their economic value. In [3], it is argued that the learning 
on the physical system:
•  �shall be fast, since dedicated training experiments lead 

to production loss and fast adaptation is desirable in case of 
varying operating conditions, such as temperature changes 
due to internal dissipation and environmental variations;

•  �and shall be safe, since damage to the machine is in general 
unacceptable.

In the next section, we outline our view on the implications 
of these requirements on appropriate design of ML-based 
approaches for control. In the subsequent section, we 
present a range of suitably designed solution approaches 
that vary in their use of prior knowledge, ranging from 
data-enhanced yet dominantly physics-motivated control 
designs to more black-box-oriented ML controllers. 
Each technique is illustrated through a case study 
of an application at Sioux Technologies.

Machine learning for motion control
Machine learning is not so easy to apply in industrial 
practice of motion control due to the many decisions that 
need to be made, and since the impact of these decisions 
on the posed motion-control requirements is often unclear: 
what controller architecture, structure and complexity 
should be chosen, how the controller should be trained, 
how learning efficiency and safety can be guaranteed, etc. 

For example, neural networks are extensively in use as black-
box function approximators in ML, but to control engineers 
they are unsatisfactory due to the difficulty in interpretation 
and lack of guarantees on learning speed and safety. In this 
section, we present insight into several aspects that contribute 
to successful applications of ML to motion control.

Role of prior knowledge
The central hypothesis in this article is that the judicious 
use of prior knowledge is pivotal for successful application 
of ML in motion control, as it can accelerate and safeguard 
the learning process. This is illustrated by Figure 1: 
•  �Black-box: ML approaches do not use prior knowledge 

and typically require excessive training effort, i.e., the 
learning is slow. Additionally, the stability of the learning 
process is difficult to guarantee, i.e., the learning is not 
guaranteed to be safe. 

•  �Grey-box: model-based ML approaches make explicit use 
of both data and prior knowledge and can lead to faster 
learning with guarantees on stability and performance. 

In the next paragraphs, we discuss in what ways prior 
knowledge can be embedded in ML for motion control. 
In particular, the following essential elements are discussed: 
the selected controller structure, the used learning 
algorithm, and the data used for training.

Control structure
Physics-based information can be directly employed in 
the control structure. The main point here is that domain-
specific engineering knowledge that has proven itself during 
the last decades should be appropriately retained.
Consider the control architecture shown in Figure 2 that is 
typically used in the motion-control domain. Here, P is the 
system to be controlled, and C and F are the feedback and feed
forward controllers. The servo error e can be represented as:
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This equation features sensitivity function S = (I + PC)–1, 
motion reference signal r, and actuator and measurement 
disturbance signals v and η, respectively. Since the goal 
of feedback control is to attenuate disturbances v and η, 
feedback controllers are often tuned based on 
characterisations (models) of these disturbances. 
Feedforward controllers are typically designed based 
on knowledge of the inverse system dynamics, since 
the reference r is perfectly tracked if F = P–1.
Industrial practice is to design the feedforward controller 
as a low-order physics-based approximation of the inverse 
system dynamics. Using Newton’s second law, for instance 
of the form:
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The central statement in this article is that the judicious use of prior knowledge (e.g. models) in 
machine-learning algorithms is fundamental for successful applications in motion control, as it can 
accelerate and safeguard the learning process. Naive application of ML techniques to motion control 
often leads to unsatisfactory results, including machine damage.

Typical motion-control architecture.
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Here, m, b, k represent the mass of the system, the damping 
and the stiffness to the fixed world, respectively. This physics-
based model directly motivates the feedforward design 
that is typically preferred by motion-control engineers:
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Here, d2r/dt2 and dr/dt are the acceleration and velocity 
profiles of the setpoint r, respectively. The parameters 
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 are to be tuned, as physical quantities m, b, k are not 
exactly known. Aided by their physical interpretability and 
the simple control structure, in traditional motion control 
the parameter tuning is often performed manually [4].

Given that this physics-based approach to controller 
structure has proven itself over the past decades, this 
domain-specific expertise should not be discarded in favour 
of full black-box control structures. In the selection of 
ML-based control structures for increasingly complex 
systems, we can build upon this expertise. In particular, 
low-order physics-based control structures can be enriched 
through ML. 
Examples are shown in Figure 3. In Figure 3a, physically 
interpretable feedforward gains are modelled as high-
complexity functions of a generalised variable φ, see also 
[11]. The add-on neural network in Figure 3b only needs 
to account for what is not compensated by the baseline 
controller, see also [14, 17]. In Figure 3c, the control gain 
is scaled by a high-complexity function, e.g., to compensate 
for effects such as cogging.

Learning algorithm
Prior knowledge can be used in the selected learning algo
rithm to ensure fast and safe learning in multiple ways. The 
optimisation criteria for learning can be designed in a control-
relevant manner, that is to explicitly reflect the control goal 
of minimising the servo error. This involves suitable 
weighting of typical optimisation criteria with dynamical 
models of the closed-loop system [14]. Also, by embedding 
models in the optimisation algorithms, i.e., the solutions to 
the posed optimisation problems, the learning process can 
be accelerated and safeguarded [3, 9, 11]. In addition, prior 
knowledge can be exploited to explicitly impose certain 
properties on the learned controller, e.g. via constrained 
learning [16] and model-based regularisation [11, 15].

Training data and process
When working with real machines, the need for dedicated 
training time on the physical system should in general be 
avoided, e.g., to avoid costly production losses in manu
facturing machines. This can be approached in several ways.

When opting for learning on the physical system, fast 
learning with guaranteed stability is essential. This can 
be achieved by limiting the required training exploration. 
For instance, prior knowledge can be exploited to suitably 
restrict the control design space via judicious selection of 
the controller structure and learning algorithm. Also, the 
learning can be targeted on the operational use-cases only, 
e.g., the repeated execution of similar tasks in motion 
systems can be exploited directly in iterative learning 
approaches; see also the forthcoming Case study 1.

Training can also be performed based on synthetic data. 
By adopting high-fidelity simulators, ML-based controllers 
can be trained in inherently safe environments and 
in accelerated (simulation) time. The goal is to (pre)train 
the controller until it is sufficiently good for transfer to the 
physical system. It can then be applied as is (zero shot), or 
further finetuned using only a few experiments. The main 

Examples of ML-enriched control structures.

3

Table 1
Overview of case studies and their use of prior knowledge.

Case study 1 Case study 2 Case study 3

Controller structure Physics-based 
parametrisation 
(white-box)

Physics-based 
parametrisation 
enriched with 
ML-functions (grey-
box)

Neural network 
(black-box) as add-
on to physics-based 
baseline (white-
box)

Learning algorithm Joint model- and 
data-based iterative 
learning

Joint model- and 
data-based iterative 
learning

Residual 
reinforcement 
learning

Training data Operational data 
from physical 
system

Operational data 
from physical 
system

Simulation 
environment based 
on model
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challenge herein is the unmodelled gap between the 
simulation environment and physical reality. To overcome 
this so-called sim2real gap, it is essential that high-quality 
prior knowledge is used to construct the simulation 
environment. In addition, there are methods to robustify 
the pretrained controller to unmodelled system behaviour, 
e.g., via domain randomisation [18].

Case studies
In this section, we present several examples of solution 
directions for successful ML-based motion control. Each 
presented approach employs different levels of prior 
knowledge encoded through the used control structure, 
learning algorithm and training process, which is 
summarised in Table 1. The efficacy of each approach, 
including learning speed and safety, is illustrated through an 
application to the case-study system at Sioux Technologies.

Learning of physics-based feedforward parameters
The abundance of measurement data in mechatronic 
systems can be exploited to improve the tuning of the 
physics-based control structures that are often preferred 
in traditional motion control. Joint model- and data-based 
iterative learning [3, 9] provides automated methods for 
fast, safe and accurate parameter tuning of fixed-structure 
controllers. Prior knowledge in the form of dynamical 
models plays an essential role to accelerate the learning 
process and guarantee safety. This is illustrated next.

A fixed-structure controller is employed of the following 
general form:
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 are the parameters to be tuned, 
and 
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 are so-called basis functions. 
A typical motion feedforward controller is recovered by 
choosing ψ1 = d2r/dt2 (mass feedforward), ψ2 = dr/dt 
(damping feedforward) and ψ3 = r (stiffness feedforward).
In model-based iterative learning [3, 9], the parameters Θ 
are iteratively optimised with guarantees on the learning 
speed and safety. The concept is as follows. Let the subscript 
j indicate the experiment index. After each experiment j, 
the parameters for the next experiment j + 1 are updated 
through the following control-oriented optimisation 
problem:
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 is a prediction of the tracking error in 
the next experiment. The crucial aspect is that fast and safe 
learning can be achieved through the combined model- 
and data-based prediction: 

Case-study system: belt-driven stage

The belt-drive system in Figure 4 is a prime example of a system where advanced 
motion-control solutions are required to achieve high motion performance, which 
makes it a suitable case-study system. In fact, its deliberate cost-effective hardware 
design directly limits the performance of traditional control designs. Relevant 
application areas include industrial 3D-printing systems.

The control goal is accurate tracking of a motion trajectory r [m] with the carriage 
position y [m] by means of input force u [N] applied to the belt drivetrain. The 
motion trajectory and tracking error e = r – y using a baseline PID feedback 
controller are shown in Figure 5. It can be observed that:
•  �the tracking error correlates with the acceleration and velocity profiles of the 

setpoint, which motivates the use of acceleration and friction feedforwards;
•  �however, during the constant-velocity phase of the setpoint, a dominant ripple  

in the tracking error can be observed. This ripple reproduces over experiments, 
yet cannot be compensated for using standard mass-damping-stiffness 
feedforwards.

The control goal for the case studies in this section is to mitigate this tracking error, 
where different ML-based approaches are taken to compensate for the observed ripple.

Belt-drive system.

4

5b

5a

Tracking of motion trajectory for 
the case-study system.
(a)	� Position profile (blue) [m] 

and velocity profile (red) 
[m/s] of the scanning 
reference. 

(b)	� Tracking error in two 
experiments (blue and red) 
using a baseline controller.
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•  �the use of approximate model 
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of the real system SP 
guarantees that the learning converges, i.e., ||ej+1|| ≤ γ||ej||, 
where the learning rate γ depends on the model quality; 
in fact, it can be shown that γ < 1 for modelling errors 
up to 100% [3].

•  �the use of past operational data ej ensures that high 
performance is achieved: if γ < 1, then ||ej|| exponentially 
goes to zero as j increases.

Case study 1 illustrates the guaranteed fast and safe learning 
behaviour through the use of prior knowledge, and the 
inherent performance limitation associated with the fixed 
controller structure.

Physics-motivated control structures work well if the 
physics that govern the system are well understood: this 
is traditionally exploited in motion control. However, 
application of this control design methodology to 
increasingly complex systems leads to excessive burdens 

Case study 1: Safe and fast 
learning of a fixed-structure 
feedforward

A fixed-structure feedforward controller is learned for 
the belt-drive system using the presented approach for 
data-based tuning. Motivated by physics, the feedforward 
consists of Coulomb friction, viscous friction and mass 
feedforward contributions: 
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The corresponding parameters θc [N], θv [Ns/m] and θa [kg] are 
iteratively learned using operational data and an approximate 
model of the system; see Figure 6. The model contains 
significant modelling errors, as both Coulomb friction and the 
high-frequent decoupling of the carriage are not modelled, 
yet it will be shown that it is of sufficient quality to guarantee 
stable learning. The operational data is generated by repeated 
execution of a typical scanning setpoint. 

The results in Figures 7 and 8 illustrate the efficacy of the 
model-based learning:
•  �fast learning is achieved: a handful of experiments 

is needed to convergence, comprising a total of only 
10 seconds of measurement time;

•  �the learning process is stable, i.e., safe: the tracking error 
is reduced consistently from experiment to experiment, 

from 0.91 mm RMS error in experiment 1 to 38 μm 
in experiment 10.

Also, the performance limit of the fixed-structure controller 
becomes apparent:
•  �a dominant periodic tracking error remains that 

reproduces over the experiments; this cannot be 
compensated by the existing feedforward structure since 
it manifests during the constant-velocity phase of the 
setpoint, where the feedforward force is constant.

7

8

6

Bode magnitude plot of the true system (black; FRF measurement) 
and the approximate model (red) that is of sufficient quality 
to guarantee fast and safe learning.

Learning of physics-based feedforward parameters: stability and fast 
learning is achieved through the use of model knowledge.

Performance limit of a fixed-structure controller: through fast and 
safe tuning the tracking error decreases asymptotically, but a residual 
error remains that cannot be compensated with the implemented 
control structure.
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on the physical modelling. Without high-fidelity physical 
understanding, it is nontrivial how to expand controller 
structures and how to tune them.

Learning of ML-enriched feedforward functions
A systematic solution direction to improve performance is 
to enrich the controller complexity through ML, yet retain 
the physics-motivated structure that has proven itself in the 

field of industrial motion control. For example, the fixed-
structure feedforward controller can be augmented 
as follows, see also Figure 3a: 
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Here, the parameters are now functions of some variables φ. 
Enabled by ML techniques, these functions can be of 

Case study 2: Machine learning 
of a position-dependent 
feedforward

Case study 1 has illustrated the performance limitation of 
fixed-structure feedforward controllers: after learning, the 
remaining residual error could not be compensated by the 
physics-motivated mass-damping-friction feedforward 
structure. However, the observed realisation of the residual 
error gives direction to how the controller structure can be 
enriched: a dominantly periodic signal is observed during the 
constant-velocity phase of the setpoint, where the period 
correlates with the drive-pulley circumference. This knowledge 
is exploited to suitably enrich the controller structure using 
Gaussian Process (GP) regression [13, Chapter 2].

In summary, a GP is a generalisation of a Gaussian 
probability distribution: whereas probability distributions 
describe (scalar) random variables, GPs describe random 
functions. Such function distributions can for example 
represent the position-dependent control parameter. 
When using GPs in a framework called Bayesian inference, 
they can be used to learn unknown functions from data. 
And crucially, certain high-level properties of the function 
to be learned can be enforced, while still allowing for 
sufficient modelling freedom. This is what is done next: 
the periodic behaviour of the residual error can be 
appropriately included in the feedforward. 

The physics-based feedforward structure is enriched using 
machine learning:
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Here, the viscous friction feedforward gain is now a 
function θv(x) [Ns/m] of the drive-pulley position x. Using 
GP-based iterative learning [11], the feedforward gains [θa , 
θv(x), θc] are learned over experiments. Here, the unknown 
function θv(x) is modelled as a GP, where the GP encodes 
the available prior knowledge: θv(x) is restricted to the class 
of functions that is periodic with x = 2π [rad] and has a 
specified level of smoothness. This class of functions is still 
rich enough to successfully model the complex friction 
behaviour of the belt-drive system.

The results in Figures 9 and 10 demonstrate that through 
GP-enhanced learning of the physics-based controller:
•  �a position-periodic viscous friction feedforward 

is successfully learned in only a few experiments, 
i.e., the learning is fast;

•  �the learning process is stable, i.e., safe, and the learned 
feedforward function remains close to physical 
expectations enforced through the GP;

•  �a performance improvement is achieved of almost 
a factor 2 in terms of RMS tracking error as compared 
to the results of Case study 1 (22 μm versus 38 μm). 

ML-enhanced learning of the damping feedforward function 
(blue to green). The position-invariant result of Case study 1 
is included for reference (red). 

RMS value of the tracking error of the ML-enhanced feedforward 
controller (blue), and results of Case study 1 (red).
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extreme complexity to compensate for intricate dynamics 
of which the particular physical realisations are not a priori 
known. Examples include complex friction behaviour, 
and position-dependent and nonlinear dynamics. 

A particularly suitable ML methodology for motion-control 
applications is Gaussian Process (GP) regression. The 
interested reader is referred to [13, Chapter 2] for an 
excellent introduction into GPs, and [10, 12] for examples 
of GP applications in motion control. The key point is that 
GPs enable to incorporate engineering knowledge on 
the unknown function that is to be learned. Case study 2 

presents a successful application that learns an intricate 
friction feedforward term.

Learning of black-box residual feedforwards	
From Case study 2, it is clear that ML techniques, encapsulated 
in the safe confines of a physics-motivated control structure, 
can lead to significant performance improvements. However, 
with increasing complexity of mechatronic systems, physics-
motivated fixed control structures might not allow to 
adequately capture all relevant dynamics, for instance if these 
are not well understood or hard to model. A black-box ML 
approach can be attempted to capture such dynamics. 

Case study 3: Residual 
reinforcement learning

This case study resumes from the endpoint of Case study 1: 
good tracking behaviour was achieved on the belt-drive 
system, but a residual error remained. Where Case study 2 
addressed this residual by enriching the controller 
complexity with ML components in a physics-guided way, 
Case study 3 considers the residual dynamics as entirely 
black-box, addressing them via residual reinforcement 
learning (RRL) [20]. 

Because of the explorative character of this RRL case study, 
a high-fidelity simulator is used that includes the complex 
position-dependent dynamics of the belt drivetrain. These 
dynamics are assumed to be entirely unknown to the RRL. The 
RRL policy is trained to compensate for any remaining tracking 
error that the base controller (the controller from Case study 1) 
does not cover, see Figure 3b for the used control structure. 

The results in Figures 12 and 13 illustrate that:
•  �RRL enables significant reduction of the tracking error 

compared to the baseline controller, i.e., effectively 
compensates for the complex position-dependent 
drivetrain dynamics.

•  �The learned control action is highly erratic, although it 
effectively compensates the realisation of the residual 
error. This is attributed to the black-box structure of the 
controller that does not make use of prior knowledge. 
Note that the neural network output is saturated at ±5 N 
to facilitate some level of machine safety. 

•  �More than 6,000 trials are needed to learn the optimal 
controller, i.e., the learning process is much slower than 
in Case studies 1 and 2. It is noted that since the learning 
takes place in accelerated simulation time, this is not 
necessarily an issue. Note that around 7,000 trials 
an abrupt performance degradation occurs, known as 
forgetting during ML training.

Considering the transfer of the trained controller to 
the physical system (not included in this case study) it may 
be clear that, although extreme performance is realised 
in simulation, the observed erratic control action and 
relatively slow learning without guaranteed stability 
remain important hurdles.

Tracking results of RRL applied to the belt-drive system.

Training behaviour of RRL, where the best control performance 
(highest training reward) is achieved after more than 6,000 trials. 
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THEME FEATURE – DEALING WITH INCREASING COMPLEXITY IN HOLISTIC MECHATRONIC SYSTEM DESIGN

Reinforcement learning (RL) is a black-box ML approach 
that learns a control law (policies) through suitably 
rewarded interaction with an environment that is assumed 
to be unknown, see Figure 11. Because this interaction is 
mostly explorative in the early phase of training, it is time 
consuming and potentially unsafe for real physical systems. 
This hampers the applicability of RL in mechatronics. 

Residual RL (RRL) is an approach that aims to address the 
potentially unsafe behaviour of RL [16, 20]. RRL relies on 
a pre-tuned white-box base controller to deliver reasonable 
performance and warrant machine safety. In addition, 
a black-box RRL policy is superposed that complements the 
control action, see Figure 3b. The base controller accelerates 
and guides the RRL training. It also enhances safety, as the 
added control action is typically small. Yet, the dependency 
on a high-fidelity simulator and the associated sim2real gap 
remains an obstacle for effective and practical usage of RRL.

Case study 3 explores RRL for the belt-drive system. 
It shows that this highly data-driven technique has the 
potential to surpass the results from more physics-based 
techniques (e.g., Case studies 1 and 2), yet this potential 
comes at the price of learning speed and safety, and is based 
on the (potentially unrealistic) assumption of a high-fidelity 
simulator.

Conclusion
The use of machine-learning techniques in motion control 
looks highly promising, and could revolutionise the creation 
process of industrial mechatronic systems. This article has 
presented a perspective on how the power of ML can be 
safely harnessed for real physical machines. The central 
statement is that the judicious use of prior system 
knowledge is fundamental for successful implementations, 
as it can accelerate and safeguard the learning processes. 
This prior knowledge can be embedded in the controller 
structure, the learning algorithm and the training process. 
ML-based motion-control concepts have been presented 
that vary in their use of ML algorithms and prior know
ledge, and their efficacy has been illustrated on a case-study 
system at Sioux Technologies. 
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Black-box ML techniques learn environment dynamics through 
rewards for explorative interactions.
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