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Introduction
Developments in technological areas such as artificial 
intelligence create a need for microchips with smaller 
feature sizes, whereas the growing number of electronic 
devices that are used worldwide fuels the need for 
producing more and more chips. To facilitate the 
production of microchips, both front- and back-end 
semiconductor manufacturing machines such as wafer 
scanners and wire bonders are equipped with several high-
precision motion stages. 

To give an indication of the extreme operating conditions: 
a wafer scanner achieves positioning accuracies in the 
nanometer-range with accelerations up to tens of g’s, 
whereas a wire bonder achieves micrometer-range 
accuracies with accelerations of more than 100 g. In meeting 
the specifications on accuracy, throughput and robustness, 
these machines hinge on the use of feedforward and 
feedback control.

Feedforward control deals with the problem of reference 
tracking, and is crucial for bringing stage-positioning 
errors within their required levels of accuracy. However, 
the feedforward controller is never perfect, meaning 
that a tracking error will always remain. Furthermore, 
unpredictable external disturbances that act on the system 
will also cause positioning errors. Therefore, to further 
minimise the positioning error, feedback control is used in 
addition to feedforward control. The majority of feedback 
controllers in industrial motion systems are of a (linear) 
Proportional-Integral-Derivative (PID) form:

 

 

 
[* Equation 1 *] 
 

𝑢𝑢(𝑡𝑡) = 𝑘𝑘p𝑒𝑒(𝑡𝑡)⏟  
Proportional

+ 𝑘𝑘i ∫ 𝑒𝑒(𝜏𝜏)d
𝑡𝑡
0 𝜏𝜏⏟        
Integral

+ 𝑘𝑘d
d𝑒𝑒(𝑡𝑡)

d𝑡𝑡⏟  
Derivative

  

 
 
 
[* Equation 2 *] 
 

𝑢𝑢(𝑡𝑡) = 𝐴𝐴0 + ∑ 𝐴𝐴𝑘𝑘∞
𝑘𝑘=1 sin(𝑘𝑘𝑘𝑘𝑡𝑡 + 𝜙𝜙𝑘𝑘)  

 
 
 
[* Equation 3 *] 
 

𝑢𝑢(𝑡𝑡) ≈ 𝐴𝐴1 sin(𝑘𝑘𝑡𝑡 + 𝜙𝜙1) 
 
 
 
[* Equation 4 *] 
 

𝑃𝑃(𝑠𝑠) = 1
𝑚𝑚𝑠𝑠2  

 

 

(1)

In (1), e typically represents the stage positioning error and 
u is the controller output, for example, a desired motor force 
or current. The reason for the widespread application of 

The ever increasing demands on precision and throughput in semiconductor 
manufacturing machines challenge today's linear control designs. For that reason, 
the industry is slowly starting to witness a shift toward more flexible, but also 
more complex nonlinear control methods. This article discusses the use of nonlinear 
integrators that can boost the performance of high-precision motion systems 
such as wafer scanners and wire bonders.

PID control seems attributed to its ease of use and simplicity 
in design. That being said, linear control designs in general 
suffer from inherent performance trade-offs [1].

An example of such a performance trade-off relates to 
the integral action in the PID controller (1). This trade-off 
is illustrated in Figure 1 and can be understood as follows. 
An integrator sums the positioning error over time 
to push the system toward zero steady-state error, 
which is necessary for counteracting static disturbances. 

However, when the error first crosses zero, the integrator has 
the summation of passed errors as a stored value in its buffer, 
thereby pushing the system away from zero error. It takes 
some time before the buffer is sufficiently emptied and the 
controller is able to push the system toward zero error again.

This subsequent emptying and filling of the integrator 
buffer lags behind changes in the feedback error signal, 
which compromises settling time and machine throughput. 
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Illustrating the limitations of linear integral control.
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Besides, this lag has a detrimental effect on the robust 
stability of the system: more lag means less robustness, and 
at some point the amount of lag can even cause the system 
to become unstable.

In light of the tightening requirements on speed, accuracy 
and robustness of high-precision machines, it is natural to 
ask whether linear control still presents the way forward. 
This question has kept researchers and control practitioners 
busy since the early 1950s, and has spurred many different 
nonlinear control approaches, some of which have been 
proven to outperform any linear controller [2] [3]. 

The potential of nonlinear control is also being noticed 
by industry. However, a viable alternative to the existing 
practice requires an analysis and design framework for 
nonlinear controllers that is in line with what is currently 
used for linear controllers. This means that intuitive 
frequency-domain-based tuning methods are highly 
preferred, and that the design can be done based solely on 
frequency-response data of the plant instead of the need 
for using a parametric model. 

Although some basic understanding of nonlinear 
controllers was obtained over the past years, a user-friendly 
and complete analysis and design framework was never 
realised. However, several scientific breakthroughs have 
been recently made in this direction, making nonlinear 
control technology currently more accessible to engineers.
In this article, we showcase two nonlinear integrators that 
are finding their way into various industrial applications: 
resetting integrators and hybrid integrators. 

Nonlinear integrators
In order to overcome the aforementioned trade-off in linear 
integrators due to lag in emptying the integrator buffer, 
we exploit nonlinear mechanisms for making this process 
faster. Two strategies are:

1.   The buffer of the integrator is emptied instantaneously by 
resetting its value to zero upon a zero-crossing detection 
of the input. This is known as a reset element; its time-
response to a sinusoidal input is shown in Figure 2 in black.

2.   The buffer of the integrator is emptied gradually before 
a zero crossing occurs by switching from an integrator 
mode to a gain mode. This is called a hybrid integrator-
gain system (HIGS), for which the time-response 
to a sinusoidal input is shown in Figure 2 in red.

Both strategies offer the improvements we aim for in terms 
of emptying the integrator buffer fast (compare the non-
linear responses in Figure 2 to that of the linear integrator), 
but two potential issues remain:
1.   The discontinuous/non-smooth nature coming from 

resetting and switching introduces the risk of exciting 
high-frequency modes in the system.

2.   The elements cannot maintain a non-zero integrator 
buffer if the input (positioning error) becomes zero. 
Namely, in that case the output of the nonlinear elements 
will be zero, i.e., the possibility to counteract static 
disturbances is lost. 

To resolve these issues, in nonlinear stage control design we 
pre- and post-filter the reset and HIGS element with carefully 
designed linear filters. As an example, for reset integrators we 
can use a lead filter in front to enforce a reset earlier, and a lag 
filter in the back to smoothen the jump in the control output 
[4], resulting in the response depicted in Figure 3a. For HIGS, 
we typically choose a lead filter in front and an integrator 
at the back. The lead filter in front is used to condition the 
switching moments, and the linear integrator at the back 
allows the controller to maintain a non-zero integrator buffer 
when the positioning error is zero. The time-response 
is depicted in Figure 3b. These filtered structures lead 
to effective practical nonlinear integrators.

To relate nonlinear integrator properties to that of a linear 
integrator in terms of ‘gain’ and ‘phase’, a quasi-linear 
approximation of the nonlinear integrators is obtained 
in the frequency-domain using the method of harmonic 
linearisation (see text box for details). The harmonic 
linearisations of the pre- and post-filtered reset and hybrid 
integrator are shown in Figure 3 (light red). Note the 
significant reduction in output delay (phase lag) as 
compared to a linear integrator with the same ‘gain’. 

Amplitude and phase of the harmonic linearisations for 
different input frequencies are shown in the Bode plot in 
Figure 4, which clearly shows a –20 dB/decade amplitude 
decay, similar to a linear integrator, paired with a reduction 
in phase lag from 90° to at most 38°. This significant phase-
lag reduction is seen as the enabler for breaking away from 
the limitations of linear control.Time-domain responses of linear and nonlinear integrators.
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Beyond the limitations of linear control?
At this point, one may wonder what the above integrator 
designs can truly offer. Before showing this shortly hereafter 
for an industrial use case, we will first emphasise this 
in a simple example.
Consider the feedback configuration in Figure 5, 
where the plant is given by:
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[* Equation 3 *] 
 

𝑢𝑢(𝑡𝑡) ≈ 𝐴𝐴1 sin(𝑘𝑘𝑡𝑡 + 𝜙𝜙1) 
 
 
 
[* Equation 4 *] 
 

𝑃𝑃(𝑠𝑠) = 1
𝑚𝑚𝑠𝑠2  

     
(3)

This represents (simplified) stage dynamics with m = 1 kg. 
We aim to design a stabilising feedback controller C 
such that the following two control objectives are met:

•   Objective 1: For r(t) = 0, the closed-loop system has zero 
steady-state output, i.e., lim(t→∞) y(t) = 0 in the presence 
of a constant input disturbance d(t) = 0.1 N.

•   Objective 2: For d(t) = 0, the closed-loop system tracks 
a unit-step input r(t) = 1 for t ≥ 0 and r(t) = 0 otherwise, 
without overshoot.

Time-domain responses of nonlinear integrators including linear pre- and post-filters.
(a) Reset integrator.
(b) Hybrid integrator.

3a 3b

Harmonic linearisation

The idea underlying the method of harmonic linearisation 
is as follows. When injecting the nonlinear integrator with 
a sinusoidal input e(t) = sin(ωt), the corresponding output 
will be periodic with the same period as the input. 
Such a periodic signal can be written as an infinite sum 
of harmonics (Fourier series), that is:
 

(2)
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Here, A0 is an offset, and Ak and φk are the amplitude and 
phase shift of the k-th harmonic. For reset elements and 
HIGS, the offset term is zero, i.e., A0 = 0, due to symmetry 
of their responses. By neglecting all higher harmonics 
in (2) we obtain a first-order harmonic approximation:
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By relating the amplitude A1 and the phase φ1 to that 
of the input signal for each input frequency ω, we obtain 
magnitude and phase information as a function of 
the excitation frequency ω, which can be depicted 
in a Bode plot. 

It is important to know whether the higher harmonics 
in (2) can indeed be neglected, i.e., whether the first-order 
approximation is valid. For this purpose, frequency-
domain tools have been developed for reset elements 
and HIGS in [5], [6] that allow a visualisation of the 
magnitude of each harmonic. In this way we can predict 
whether the higher harmonics will have a significant 
contribution in the overall control output.

Frequency-domain characteristics of nonlinear integrators based 
on harmonic linearisation.
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The first objective of constant disturbance rejection 
necessitates (according to the internal model principle) 
integral action in the controller C. However, as the plant 
is a double integrator, the resulting closed-loop system 
will always have overshoot in the step-response when 
linear integral control is used [1, Chapter 1]. This is a 
mere consequence of the introduced phase lag and results 
in longer settling times. Note that overshoot can be avoided 
at the cost of losing constant disturbance rejection (e.g., 
with PD control). Hence, we face the following trade-off:

      Given the motion system in (3), there does not exist 
a stabilising linear feedback controller C that can meet 
objectives 1 and 2 simultaneously.

 
This trade-off reflects the discussed limitations in integral 
control. That is, on the one hand integral control is required 
for counteracting static disturbances, but on the other hand 
it results in overshoot due to phase lag. As an example 
of demonstrating this trade-off in linear systems, we take 
the PID controller in (1) with kp = 1,000, ki = 3,000, 
and kd = 1,000, for which the closed-loop system tracking 
and disturbance rejection properties are shown in black 
in Figure 6. For the purpose of comparison, we also show 
the response of a linear PD controller (i.e., with ki = 0) 
in grey. As expected, both the PID and PD design do 
not meet the control objectives simultaneously.

We now replace the linear integrator in the above PID 
design with a hybrid integrator combined with linear pre- 

and post-filters (for details on the hybrid integrator structure 
see [3]). This controller stabilises the system (see the text box 
on stability analysis for details), and the resulting tracking 
and disturbance rejection properties are shown in Figure 6 
in red. Clearly, both control objectives are met simultaneously 
as the steady-state output in the presence of the disturbance 
is zero, and the system tracks the step input without over-
shoot. Moreover, the nonlinear system settles much faster 
as compared to its linear counterpart. This simple example 
demonstrates the potential of nonlinear control in terms of 
moving beyond classical trade-offs in linear control designs.

Industrial use case: wire-bonding machine
From here, we put theory into practice, and demonstrate 
the performance potential of nonlinear integrators on 
an industrial wire bonder manufactured by ASMPT – for 
an industrial case study of hybrid integral control in wafer 
scanners, see, e.g., the results in [10]. Wire bonders make 
electronic interconnections (wires) between an integrated 
circuit (IC) and the package or substrate that it is mounted 
on; see Figure 7 for an impression. Wire-bonding machines 
play a crucial role in the production of a wide range 
of microchips and other electronic devices.

The most important component of a wire bonder is its 
motion platform, which is illustrated in Figure 9. This 
platform consists of stacked X-, Y-, and Z-stages. The 
X-stage (red) is connected to the base frame of the machine 
(green) by means of a roller guide. The Y-stage (purple) is 
connected to the X-stage, also with a roller guide. Together, 
the XY-stage can move in the horizontal plane. Finally, the 
Z-stage (blue), which contains the capillary tip that pulls the 
wires, is connected to the Y-stage by means of leafsprings 
functioning as a pivot mechanism. In this way, the Z-stage 
allows for a movement in the vertical direction. Each stage 
is controlled by an advanced feedforward controller 
and a linear feedback controller. 

Closed-loop system configuration with plant P and feedback controller C.
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Linear and nonlinear closed-loop system responses.
(a) Step-response.
(b) Disturbance rejection.
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Roughly speaking, a wire bonder can bond in the order 
of ten wires per second while maintaining positioning 
accuracies in the micrometer range. During motion, it is 
important to accurately follow the reference setpoint, in 
order to prevent neighbouring wires touching each other, 
resulting in short circuiting. After the trajectory is finished 
and a new bonding pad has been reached, fast settling 
is required to rapidly start a new bonding procedure.

If we would be able to decrease the positioning error by 
improving the motion controller, we could in turn decrease 
the settling time or speed up the motion, which allows for 
higher machine throughput (more bonded wires per second). 
To improve the positioning accuracy beyond what is possible 
with linear control, we incorporated a reset integrator in 
the X-stage controller design. Design of the reset controller 
was done using an intuitive frequency-domain loopshaping 
approach using frequency-response data of the plant, similar 
to what is done in linear control design (for more details 
on this method, the interested reader is referred to [5]).

Figure 10 compares the (normalised) positioning errors 
measured during motion-control experiments for the linear 
controller and the reset controller. During the experiments, 
a forward and a backward movement is made (dashed 
black). The goal was to further suppress the error during 
the parts at which the system is at a bond location and 
needs to settle, as indicated in grey. The positioning error 
obtained with the linear controller is shown in blue, whereas 
the error obtained with the reset controller is shown in red. 

Stability analysis

Stability analysis of systems with nonlinear integrators is not straightforward. 
But formal stability checks that match with graphical (frequency-domain-based) 
methods for linear systems through Nyquist-like plots do exist for reset integrators 
and hybrid integrators. For example, to check stability of the previously discussed 
system containing a hybrid integrator, we can use the test in [7, Section 4]. 

This test is illustrated in Figure 8, which is reminiscent of a classical Popov plot [11]. 
The black line in this figure represents a Nyquist-like curve of the linear portion of 
the system, i.e., it is a combination of the plant P and linear filters in the controller 
(see [7] for more details). The grey line can be interpreted as a worst-case input-
output property of the nonlinear element in the controller. For example, a vertical 
line corresponds to a maximum input-output gain of the nonlinearity. 

The resulting test is simple: the 
black Nyquist-like curve must 
remain to the right of the tilted 
grey line. Not only does this 
test give rigorous stability 
guarantees, but the minimum 
distance between the Nyquist 
plot and the grey line indicates 
a robustness margin. Similar 
tests for reset systems can be 
found in  [8], [9].

Illustration of the wire-bonder motion platform with base-frame 
(green), X-stage (red), Y-stage (purple), and Z-stage (blue).

Illustrations of the wire-bonding process.
(a) ASMPT wire-bonding machine. 
(b) IC wire-bonded to a substrate [12]. 

Popov-like stability test with the black line representing 
a Nyquist-like curve of the linear portion of the system, 
while the grey line characterises the nonlinearity.   
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7a

7b 9

Positioning errors (normalised) achieved during motion-control 
experiments on a wire-bonder motion stage.

10
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Performance is measured in terms of the root mean square 
(RMS) error after the end of motion. With reset control, 
an RMS improvement of 32% as compared to the linear 
controller is achieved, showing the performance potential 
of this nonlinear method. The cumulative power spectral 
density (cPSD) is shown in Figure 11a, where it can be seen 
that especially in the low-frequency range the energy in 
the error signal has been reduced. This corresponds well 
with what was expected from the frequency-domain-based 
tuning of the reset controller. 

To illustrate this result, the sensitivity functions (ratio 
between maximum amplitude of error and reference) 
of both controllers are depicted in Figure 11b. Note that for 
the reset controller, this sensitivity function also includes 
the effect of higher-order harmonics, which we can predict 
using the closed-loop prediction tools presented in [5]. 
It can be observed that we predict more suppression of the 
error in the low-frequency range. As visible in Figure 11a, 
the measurement results confirm our expectations, show-
casing the strength of the developed frequency-domain 
design tools for the nonlinear integrators.

Concluding remarks
This article highlights two nonlinear integrator strategies: 
reset integrators and hybrid integrators. These integrators 
are able to overcome certain fundamental trade-offs 
in linear control design, and have the potential to enable 
future performance improvements in high-precision 
motion systems. We showcased the potential performance 
improvements on an industrial wire-bonding machine.

Now, we close this article with the statement that nonlinear 
controllers are not presented as a universal solution 
to every control problem, but rather as another useful ‘tool’ 
in the control engineer’s toolbox.

REFERENCES
[1]  M.M. Seron, J.H. Braslavsky, and G.C. Goodwin, Fundamental 

Limitations in Filtering and Control, Springer Verlag, London, UK, 
1997.

[2]  O. Beker, C.V. Hollot, and Y. Chait, “Plant with integrator: an example 
of reset control overcoming limitations of linear feedback”, IEEE 
Transactions on Automatic Control, vol. 46 (11), pp. 1797-1799, 2001.

[3]  S.J.A.M. van den Eijnden, M.F. Heertjes, W.P.M.H. Heemels, and H. 
Nijmeijer, “Hybrid Integrator-Gain Systems: A Remedy for 
Overshoot Limitations in Linear Control?”, IEEE Control Systems 
Letters, vol. 4 (4), pp. 1042-1047, 2020.

[4]  N. Karbasizadeh, and S.H. HosseinNia, “Continuous reset element: 
Transient and steady-state analysis for precision motion systems,” 
Control Engineering Practice, vol. 126, pp. 105232, 2022.

[5]   D. Caporale, L.F. van Eijk, N. Karbasizadeh, S. Beer, D. Kostić, and 
S.H. HosseinNia, “Practical Implementation of a Reset Controller 
to Improve Performance of an Industrial Motion Stage”, 
IEEE Transactions on Control Systems Technology, vol. 32 (4), 
pp. 1451-1462, 2024.

[6]  L.F. van Eijk, S. Beer, R.M.J. van Es, D. Kostić, and H. Nijmeijer, 
“Frequency-Domain Properties of the Hybrid Integrator-Gain 
System and Its Application as a Nonlinear Lag Filter”, IEEE 
Transactions on Control Systems Technology, vol. 31 (2), pp. 905-912, 
2023.

[7]  S. van den Eijnden, M. Heertjes, H. Nijmeijer, and M. Heemels, 
“Stability analysis of hybrid integrator-gain systems: A frequency-
domain approach”, Automatica, vol. 164, pp. 111641, 2024.

[8]  A.A. Dastjerdi, A. Astolfi, and S.H. HosseinNia, “Frequency-domain 
stability methods for reset control systems”, Automatica, vol. 148, 
pp. 110737, 2023.

[9]  S. van den Eijnden, T. Chaffey, T. Oomen, and M. Heemels, “Scaled 
graphs for reset control system analysis”, European Journal of 
Control, pp. 101050, 2024.

[10]  S. van den Eijnden, M. Francke, H. Nijmeijer, and M. Heertjes, 
“Improving Wafer Stage Performance With Multiple Hybrid 
Integrator-Gain Systems”, IFAC-PapersOnLine, vol. 53 (2), pp. 8321-
8326, 2020.

[11]  H.K. Khalil, Nonlinear Systems, Prentice Hall, Upper Saddle River, NJ, 
USA, 2002.

[12]  Mister rf, en.wikipedia.org/wiki/Wire_bonding.
 

Frequency-domain analysis of motion-control experiments on the wire-bonder motion stage.
(a) Normalised cPSD of positioning errors.
(b) Sensitivity function.
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